ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

На правах рукописи

ЭССЕР Арина Александровна

НАНОКЛАСТЕРЫ И ЛОКАЛЬНЫЕ АТОМНЫЕ КОНФИГУРАЦИИ В СТРУКТУРЕ ИНТЕРМЕТАЛЛИДОВ

02.00.04 – физическая химия

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: доктор химических наук, профессор Блатов Владислав Анатольевич

Самара – 2015

Оглавление

Введение	6
Глава 1. Обзор литературы	11
Часть 1.1. Особенности классификации кристаллических структур	11
1.1.1. Классификация на основе структурного подобия	11
1.1.2. Классификация на основе топологического подобия	13
1.1.2.1. Идентификация химических связей методом полиэдров	
Вороного-Дирихле	13
1.1.2.2. Определение топологии кристаллических структур в рам-	
ках теории графов	15
1.1.2.3. Номенклатура атомных сеток	18
Часть 1.2. Способы кристаллохимического описания атомного строе-	
ния интерметаллидов	20
1.2.1. Модель плотнейших шаровых упаковок	20
1.2.2. Модель координационных полиэдров	20
1.2.3. Нанокластерное моделирование	21
Часть 1.3. Некоторые семейства интерметаллических структур и	
кристаллохимические особенности их строения	25
1.3.1. Фазы Лавеса	25
1.3.2. ү-Латунь	27
1.3.3. Квазикристаллы	30
Часть 1.4. Моделирование структурообразования нанокластеров ме-	
тодом молекулярной динамики	36
1.4.1. Моделирование нанокластеров на основе потенциала Лен-	
нарда-Джонса	37
1.4.2. Моделирование нанокластеров на основе потенциала Клери-	
Розато	38
Часть 1.5. Соединения, образующиеся в системах Au-Zn, Au-Zn-Mo	
и Cu-In-Mn	40

1.5.1. Двойные соединения системы Au-Zn	40
1.5.2. Тройные соединения систем Au-Zn-Mo и Cu-In-Mn	43
Глава 2. Экспериментальная часть	45
Часть 2.1. Объекты исследования	45
Часть 2.2. Методы исследования	46
2.2.1. Кристаллохимический анализ интерметаллидов	46
2.2.2. Моделирование нанокластеров Cu _N (N = 4-100 атомов) мето-	
дом молекулярной динамики	51
2.2.3. Исходные вещества, метод синтеза и анализа интерметалли-	
дов	51
Часть 2.3. Результаты исследования	54
2.3.1. Кристаллохимическая систематика интерметаллидов	54
2.3.1.1. Топологическая и геометрическая классификация интер-	
металлидов	54
2.3.1.2. Классификация интерметаллидов по топологическим ти-	
пам нанокластеров	54
2.3.1.2.1. Нанокластеры на основе икосаэдра	56
2.3.1.2.2. Нанокластеры на основе пентагондодекаэдра	57
2.3.1.2.3. Нанокластеры на основе кластера Бергмана	58
2.3.1.2.4. Нанокластеры на основе кластера ү-латуни	58
2.3.2. Результаты МД моделирования нанокластеров Cu _N	58
2.3.3. Особенности строения $Au_{10}Mo_4Zn_{89}$, $AuZn_{2.1}$ и Cu_2InMn	59
Глава 3. Обсуждение результатов	60
Часть 3.1. Геометрико-топологическая систематика интерметаллидов.	60
3.1.1. Распределение интерметаллидов по топологическим типам	60
3.1.2. Коллекция топологических типов нанокластеров	61
Часть 3.2. Моделирование интерметаллидов как ансамблей нанокла-	
стеров	64
3.2.1. Икосаэдрические конфигурации	64

3.2.1.1. Особенности локальной и глобальной топологии связыва-				
ния икосаэдров	64			
3.2.1.1.1. Интерметаллиды, построенные из одного типа икосаэд-				
ров	65			
3.2.1.1.2. Интерметаллиды, построенные из нескольких типов				
икосаэдров	74			
3.2.1.2. Химический состав икосаэдров	74			
3.2.1.3. Взаимосвязь между топологическими параметрами и хи-				
мическим составом нанокластеров	75			
3.2.2. Додекаэдрические конфигурации	76			
3.2.2.1. Симметрия додекаэдрических нанокластеров	77			
3.2.2.2. Кристаллические структуры, содержащие оболочки в				
виде дельтаэдров D32, D42, D50	77			
3.2.3. Конфигурации в виде кластеров Бергмана	83			
3.2.4. Конфигурации в виде кластеров ү-латуни	84			
3.2.4.1. Нанокластеры с внутренним 0@4 ядром	84			
3.2.4.2. Нанокластеры с внутренним 0@6 ядром	90			
3.2.4.3. Нанокластеры с внутренним 0@8 ядром				
3.2.4.4. Центрированные нанокластеры	95			
3.2.4.5. Сравнительный анализ нанокластерной и полиэдрической				
моделей	96			
3.2.4.6. Химический состав нанокластеров ү-латуни	98			
3.2.5. Устойчивость нанокластеров	101			
3.2.6. База знаний топологических типов нанокластеров	102			
Часть 3.3. Особенности строения модельных нанокластеров Cu _N и их				
реализуемость в интерметаллидах	105			
Часть 3.4. Особенности строения синтезированных интерметаллидов	108			
3.4.1. Особенности структуры Au ₁₀ Mo ₄ Zn ₈₉	109			
3.4.2. Особенности структуры AuZn _{2.1}	112			
3.4.2. Особенности структуры Cu ₂ MnIn	114			

4

Выводы	115
Заключение	117
Список литературы	118
Приложение	139

введение

Актуальность работы. В структурной химии интерметаллидов большое внимание уделяется выяснению их строения, рациональной систематике, а также исследованию родственности между структурными типами. Последняя задача особенно актуальна для материаловедения, так как установление структурного родства необходимо для выявления сходства физических свойств интерметаллидов и сплавов разного состава и создания новых материалов на их основе. В настоящее время одним из наиболее распространенных является описание кристаллических структур интерметаллидов в терминах кластеров (строительных блоков). Однако, как правило, кластерное представление имеет субъективный характер, основывается на визуальном анализе геометрии структуры и зачастую не опирается на анализ межатомных взаимодействий. В результате выделение кластерных фрагментов в атомной сетке происходит вне связи с процессом ее формирования и может быть весьма произвольным, что мешает определению структурных отношений между кристаллическими структурами интерметаллидов. Кроме того, за последние десятилетия массив структурных данных, которые требуют систематизации, значительно увеличился; в частности, в крупнейших кристаллохимических базах содержатся сведения по строению более чем 27000 интерметаллидов. Очевидно, что использование традиционных методов визуального анализа для обобщения такого объема информации невозможно. Одним из возможных путей преодоления указанных проблем является использование топологических методов, позволяющих автоматизировать описание структур интерметаллидов любой сложности [1].

<u>Степень разработанности избранной темы.</u> Систематический анализ всех известных кристаллических структур интерметаллидов по критерию сходства образующих их нанокластеров до настоящего времени не проводился. Разработанные ранее модели построения некоторого числа интерметаллидов в терминах атомных кластеров не являются унифицированными, поскольку в ряде случаев одни и те же

структуры интерметаллидов разными авторами были описаны по-разному. Несмотря на наличие обширного числа публикаций, недостаточная научная проработанность проблем единой систематизации интерметаллидов обусловила необходимость исследования структурных мотивов в интерметаллидах на основе строгого алгоритма [1].

<u>Целью работы</u> являлась систематика кристаллических структур интерметаллидов по критерию сходства образующих их нанокластерных структурных единиц, а также установление взаимосвязей между составом, строением металлических нанокластеров, локальной и глобальной топологией их связывания в структурах интерметаллидов.

Задачи работы заключались в следующем:

 провести поиск и классификацию полиоболочечных нанокластеров во всех известных структурах интерметаллидов;

 выявить наиболее типичные нанокластеры и провести классификацию их типов связывания в интерметаллидах на локальном и глобальном (в масштабах всей структуры) уровнях;

 – сформулировать закономерности, связывающие химический состав, структуру, локальную и глобальную топологию связывания нанокластеров;

 изучить встречаемость в структуре интерметаллидов некоторых нанокластеров, полученных методами математического моделирования;

 опираясь на полученные закономерности, осуществить прогнозирование особенностей строения новых интерметаллидов и провести их синтез.

Основные научные результаты и положения, выносимые на защиту:

 топологическая систематика 27972 кристаллических структур интерметаллидов;

 – база данных по топологическим типам 2017 полиоболочечных нанокластеров (ТТN-коллекция комплекса программ ToposPro);

 новый метод топологической классификации локального связывания первичных нанокластеров в структуре интерметаллидов; – взаимосвязи между химическим составом, топологическими и геометрическими свойствами икосаэдрических, додекаэдрических и 26-атомных (типа γ-латуни) нанокластеров и их упаковок в интерметаллидах;

 встречаемость в структурах интерметаллидов атомных конфигураций, топологически эквивалентных модельным нанокластерам Cu_N (N = 4-100 атомов);

– кристаллическая структура и нанокластерные модели строения трех новых интерметаллидов Au₁₀Mo₄Zn₈₉, AuZn_{2.1} и Cu₂InMn.

Научная новизна работы заключается в том, что впервые проведен кристаллохимический анализ и определение геометрико-топологических параметров нанокластерных моделей строения для всех известных интерметаллических соединений. Выявлены взаимосвязи между химическим составом, геометрическими и топологическими свойствами икосаэдрических, додекаэдрических и 26-атомных (типа γ-латуни) нанокластеров и способам их связывания в структуре интерметаллидов. Предложен новый метод топологической систематики интерметаллидов на основе построения модели локального связывания нанокластеров. Получены данные о кристаллическом строении трех новых интерметаллидов.

<u>Теоретическая и практическая значимость.</u> Созданная база данных по топологическим типам полиоболочечных нанокластеров является инструментом систематизации интерметаллических соединений по критерию сходства образующих их нанокластеров, а также может быть использована в качестве справочника. Обнаруженные взаимосвязи между составом металлических нанокластеров, локальной и глобальной топологией их связывания позволяют прогнозировать особенности кристаллического строения интерметаллидов.

Методология и методы диссертационного исследования. Методологическую основу диссертационного исследования составляет тополого-графовый подход к изучению кристаллических структур интерметаллических соединений. В ходе данного исследования использовались экспериментальные (синтез, моделирование, сравнение), теоретические (восхождение от абстрактного к конкретному, идеализация, формализация) и эмпирически-теоретические (абстрагирование, индукция, дедукция) методы.

8

<u>Степень достоверности и апробация результатов.</u> Достоверность полученных результатов определяется математической строгостью использованных моделей и алгоритмов, большим объемом изученных выборок, а также прецизионностью использованных экспериментальных методов определения кристаллической структуры. Полученные данные хорошо согласуются с результатами исследований других авторов.

Результаты диссертационной работы были представлены на XXVII Европейской кристаллографической конференции (Норвегия, Берген, 2012), VII Национальной кристаллохимической конференции (Россия, Суздаль, 2013), XXVIII Европейской кристаллографической конференции (Великобритания, Варвик, 2013), SCTE 2014 – 19-й Международной конференции по твердым соединениям переходных элементов (Италия, Генуя, 2014), 2-й Совместной AIC-SILS конференции (Италия, Флоренция, 2014).

По теме диссертации опубликованы 4 статьи в рекомендованных ВАК рецензируемых журналах, а также тезисы 5 докладов.

Личный вклад автора заключался в поиске и анализе литературных данных, проведении топологического анализа интерметаллидов, разработке новой методики топологической классификации интерметаллидов, основанный на построении модели локального связывания первичных нанокластеров, синтезе структуры Cu₂InMn, нанокластерном анализе структур Cu₂InMn, Au₁₀Mo₄Zn₈₉ и AuZn_{2.1}, обобщении полученных данных при подготовке статей и тезисов докладов. Расшифровка кристаллической структуры Cu₂InMn проводилась совместно с доктором Солоха П. (университет Генуи, Италия) и профессором Прозерпио Д. (Миланский университет, Италия). Синтез и расшифровка Au₁₀Mo₄Zn₈₉ и AuZn_{2.1} были проведены к.х.н. Яной П. П и профессором Лидиным С. (Лундский университет, Швеция); отдельные результаты по кристаллохимическому анализу AuZn_{2.1} были получены совместно с профессорами Тимье С. и Миллером Г. Д. (университет штата Айова, США). Помощь при исследовании монометаллических медных и серебряных нанокластеров методами молекулярной динамики оказал аспирант Мясниченко В. С. (Тверской государственный университет, Россия). Подготовка публикаций выполнялась совместно с соавторами работ и научным руководителем.

<u>Объем и структура работы.</u> Диссертация состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, выводов, списка используемой литературы (231 источник) и приложения (содержащего 22 таблицы). Текст диссертационной работы изложен на 138 страницах, включает 16 таблиц, 74 рисунка.

11 Глава 1. ОБЗОР ЛИТЕРАТУРЫ

Часть 1.1. Особенности классификации кристаллических структур

В настоящее время известно несколько десятков тысяч различных кристаллических структур интерметаллидов, которые содержатся в базе данных по неорганическим соединениям (БДНС [2], выпуск 2015/1, всего 177981 структура, из них 35205 структур металлов и соединений металлов друг с другом) и базе данных Пирсона [3] (2014 г., всего 256207 структур, из них 35542 структуры металлов и соединений металлов друг с другом). При этом не все вещества имеют принципиально различное строение. Близость друг к другу кристаллических структур химических соединений дает возможность разбивать большое количество кристаллов на различные подмножества и таким образом классифицировать их. Классификация кристаллических структур является методом их систематизации по некоторым выбранным критериям, что позволяет объединить сведения для однородных по некоторым параметрам соединений, а также выявить связи между ними.

1.1.1. Классификация на основе структурного подобия

Традиционный способ классификации кристаллических структур интерметаллидов основан на анализе геометрических особенностей кристаллической решетки. Основным таксоном является структурный тип (СТ), в который обычно объединяют кристаллические структуры, обладающие одинаковой пространственной группой симметрии, размещением атомов по однотипным правильным системам точек и одинаковыми координационными числами (КЧ) атомов. Особая сложность заключается в установлении родственных связей между структурными типами. Авторы [4] предложили рассматривать разные степени структурного подобия, выделяя изоточечные, изотипные и гомеотипные структуры. *Изоточечными* называют структуры одинакового стехиометрического состава с одинаковой пространственной группой и эквивалентными атомами, размещающимися по однотипным правильным системам точек. В свою очередь изотипность было предложено рассматривать в двух аспектах: геометрическом (кристаллографическом) и кристаллохимическом (физико-химическом). Кристаллографически изотипными (изоконфигурационными) считаются те изоточечные структуры, в которых взаимные конфигурации всех заполненных позиций подобны друг другу. Кристаллохимически изотипными считаются вещества, в которых межатомные связи имеют близкие физико-химические характеристики. Изоструктурными (как частный случай изотипности) следует считать вещества, для которых такие геометрические характеристики как отношение осей ячейки, углов между ними, значений атомных координат и координационных чисел соответствующих атомов являются близкими. Соединения, характеризующиеся одной пространственной группой симметрии, распределением атомов по однотипным правильным системам точек и наличием одинаковых координационных чисел (КЧ) атомов, относятся к одному структурному типу [4]. Гомеотип определяется возможностью описания одного СТ на основе другого СТ, подразумевая их геометрическое сходство.

Урусов В. С. считал, что главным признаком отнесения некоторого кристаллического вещества к тому или иному СТ является сохранение одинакового мотива и способа сочетания друг с другом одинаковых структурных единиц (СЕ) [5]. Отметим, что этот вывод не согласуется с традиционным понятием СТ, и в дальнейшем мы будем придерживаться определения СТ, который был предложен в [4].

Согласно [4], строение СЕ отражает ее пространственную и геометрическую структуру, т.е. тот способ, с помощью которого СЕ строится из субъединиц, которыми могут быть полигоны, полиэдры или любые другие атомные кластеры. К характеристикам СЕ как целого относятся размерность, кратность, разветвленность и периодичность. Размерность СЕ определяется как 0 для индивидуальных атомов или изолированных атомных групп; 1, 2 и 3 – для бесконечных цепочек, слоев и каркасов, соответственно. Кратность СЕ есть число отдельных субъединиц, которые связываются друг с другом в СЕ одной и той же размерности. СЕ конечного

размера или отдельная цепочка считаются неразветвленными, если они не содержат субъединиц, которые соединяются с более чем двумя другими СЕ. Периодичность СЕ бесконечной протяженности есть число субъединиц внутри периода повторяемости такой СЕ [5].

Дополнительной классификационной характеристикой структурного типа является символ (код) Пирсона, который состоит из трех частей: 1) тип сингонии; 2) тип решетки Бравэ; 3) число атомов в элементарной ячейке. Типичная характеристика структуры неорганического соединения включает описание типа ячейки, ее симметрии и символа Пирсона (например, интерметаллид NaCd₂ [6] характеризуется гранецентрированной кубической ячейкой (*F*) с точечной группой симметрии $\bar{4}3m$, символ Пирсона *cF*1192).

Для обозначения наиболее известных структурных типов иногда используют стехиометрическую классификацию структур, принятую в международном справочнике «Strukturbericht». Согласно этой классификации, каждому структурному типу присвоен символ, состоящий из буквы и цифрового кода: структуры простых веществ обозначаются буквой А, бинарных соединений типа AB – буквой B, соединений типа AB₂ – буквой C, соединения типа A_mB_n – буквой D, соединения типа A_mB_nC_p – буквой E и т.д. (например, MgCu₂ [7] относится к соединению типа C).

1.1.2. Классификация на основе топологического подобия

1.1.2.1. Идентификация химических связей методом полиэдров Вороного-Дирихле

Традиционным кристаллохимическим методом определения химических связей является анализ расстояния между атомами (R_{AB}). Принято считать, что если расстояние между атомами A и B меньше или равно сумме их радиусов, то между ними есть связь [8-10]. Для установления металлических связей используют систему металлических радиусов. В качестве металлического радиуса атома A принята половина кротчайшего расстояния r(A-A) в структуре металла. Недостатком данного метода является то, что при анализе химических соединений с различным

типом межатомных связей необходимо использовать различные системы радиусов (система атомных радиусов Слейтера [11], система ионных радиусов Шеннона [12], система межмолекулярных радиусов [13] и т.д.). Кроме того, данный метод опирается на сферическую модель атома, что в свою очередь было опровергнуто результатами анализа распределения электронной плотности вокруг атома (метод Бейдера) [14]. Следует отметить, реализация метода Бейдера достаточно трудоемка, что ограничивает область его применения.

Более сложный геометрический метод анализа межатомных взаимодействий основан на модели разбиения кристаллической структуры на полиэдры Вороного-Дирихле (ПВД) [15, 16]. ПВД представляет собой выпуклый многогранник, который служит геометрической моделью атома в кристалле и близок по форме и размеру к атомному домену в методе Бейдера [17]. Количество граней ПВД определяет координационное число соответствующего атома, причем размер грани ПВД позволяет оценить силу межатомного взаимодействия, которая считается пропорциональной величине телесного угла, соответствующего грани ПВД [15, 16] (рисунок 1).

Рисунок 1. Разбиение полиэдров Вороного-Дирихле в структуре MgCu₂ (a); ПВД атомов Mg и Cu (б); телесный угол заштрихованной грани ПВД равен площади заштрихованного сегмента единичной сферы, высекаемого шестиугольной пирамидой, в вершине которой находится рассматриваемый атом Mg (в).

В случае интерметаллидов обычно во внимание принимают все возможные контакты, отвечающие граням ПВД каждого атома с телесным углом (Ω) более 1.5% от полного телесного угла 4 π стерадиан [10, 18]. Метод телесных углов реализован в программе *AutoCN* комплекса ToposPro [19], что позволяет в автоматическом режиме проводить анализ связности и определять координационные числа атомов большого массива кристаллических структур интерметаллидов. Использование ПВД, в отличие от традиционного анализа межатомных расстояний, позволяет учесть влияние атомов окружения на данный контакт.

1.1.2.2. Определение топологии кристаллических структур в рамках теории графов

Для топологического анализа любую кристаллическую структуру можно представить в виде трехмерного бесконечного неориентированного графа – *сетки*, в котором атомы отождествляются с вершинами графа (узлами), а межатомные контакты – с его ребрами. Топология структуры определяется способом связывания узлов ребрами графа, т.е., системой межатомных связей.

Универсальной топологической характеристикой графа является матрица смежности [20], представляющая собой квадратную матрицу, в которой строки и столбцы соответствуют узлам свернутого графа сетки; на пересечении *i*-ой строки и *j*-го столбца стоит одно из двух значений 0 (если *i*-ая и *j*-ая вершины графа не связаны ребрами) или 1 (если *i*-ая и *j*-ая вершины графа связаны ребрами). Так как матрица смежности бесконечного графа содержит бесконечное количество строк и столбцов, было предложено представлять граф периодической структуры в виде так называемого свернутого графа (или фактор-графа) (СГ) [21, 22]. Операция свертывания бесконечного графа заключается в замыкании всех ребер, выходящих за пределы элементарной ячейки, на трансляционно эквивалентные вершины, которые лежат внутри или на границе этой элементарной ячейки. Таким образом, в результате проведенной операции сворачивания бесконечного графа в конечный информация о топологии атомной сетки может быть представлена в виде матрицы смежности свернутого графа для любого соединения в компактном виде и сохранена в машинной памяти [23].

Кроме матрицы смежности для описания топологии периодического графа используют ряд других характеристик. Замкнутая цепь, в которой первая и последняя вершины графа совпадают, называется *циклом*; цикл, который не может быть представлен в виде суммы двух других циклов меньшего размера, называется *кольцом* (рисунок 2).

Рисунок 2. Четырехчленное кольцо (а) и пятичленный цикл (б) (выделены красным цветом) в плоской сетке esq¹,

В качестве топологических индексов, характеризующих топологию сетки, используют координационные последовательности, точечные символы (развернутые символы Шлефли) и вершинные символы [24-27]. Координационная последовательность представляет собой последовательность чисел атомов в последующих координационных сферах данного атома сетки. Точечный и вершинный символы перечисляют количество и размер кратчайших циклов и колец, соответственно, начиная от любой неэквивалентной вершины в сетке. В качестве иллюстрации приведем значения описанных выше топологических индексов для алмазной сетки

¹ Здесь и далее для обозначения топологических типов используется описанная в § 1.1.2.3 символика трехбуквенных кодов.

(сетки атомов в структуре алмаза): координационная последовательность – 4 12 24 42 64 92 124 162 204 252, точечный и вершинный символы совпадают - 6₂6₂6₂6₂6₂6₂6₂(рисунок 3).

Рисунок 3. Первая (красные шары), вторая (зеленые шары), третья (оранжевые шары) и четвертая (синие шары) координационные сферы в структуре алмаза (а); шестичленный контур (выделен красным цветом), являющийся одновременно циклом и кольцом (б) в алмазной сетке.

К представителям одного *топологического типа* авторы [28] относят соединения, характеризующиеся идентичным набором топологических индексов, независимо от химического состава и симметрии кристаллических структур.

Топологическое представление интерметаллидов может быть представлено на уровне *полного* и *частичного* описания атомной сетки [1]. Структурное представление интерметаллидов в виде сетки с учетом всех атомов и межатомных контактов называется полным. Для построения частичной *базовой сетки* проводится упрощение сетки исходной кристаллической структуры путем стягивания структурных единиц в их центры тяжести (рисунок 4).

Рисунок 4. Последовательное упрощение исходной сетки структуры ZrZn₂₂ до базовой сетки с топологией **mgc-х** (тип структуры фазы Лавеса MgCu₂).

1.1.2.3. Номенклатура атомных сеток

Известно несколько номенклатур топологических типов:

1. Символы О'Киффа [29] имеют трехбуквенное обозначение и используются в базе данных топологических типов RCSR (Reticular Chemistry Structure Resource) для классификации сеток [30]. Например, **dia**, **dia-a**, **dia-f**, **dia-g**, **dia-c**, где **dia** обозначает топологический тип алмазной сетки, суффиксы **a** и **c** – *аугментированную* сетку и систему из двух взаимопроникающих сеток соответственно, суффиксы **f** и **g** – различные варианты *декорирования*. Декорированная сетка получена в результате замены узлов исходной сетки на кластеры, в аугментированной сетке форма кластера совпадает с формой координационного полиэдра узла исходной сетки. В настоящее время база RCSR содержит 2440 атомных сеток; для каждой сетки приведен ее трехбуквенный символ, вложение (геометрическая реализация) максимальной симметрии, координационные последовательности и вершинные символы.

2. Символы Фишера [31] используются для обозначения упаковок эквивалентных шаров, соответствующих вложениям унинодальной сетки (т. е. сетки, у которой все узлы симметрически эквивалентны), в которых все ребра имеют одинаковую длину. Символ имеет вид k/m/fn, где k – координационное число узлов; m – размер кратчайшего кольца; f – буква, обозначающая сингонию наиболее симметричного вложения сетки; n – порядковый номер сетки в списке всех неизоморфных сеток с данным набором k/m/fn. Например, алмазная сетка характеризуется символом 4/6/c1.

3. Топологическим типам атомных сеток, которые сгенерированы в рамках проекта EPINET (Euclidean Patterns in Non-Euclidean Tilings) [32], присваиваются символы типа sqcN, где символ s указывает на то, что вложения данных сеток в трехмерное евклидово пространство были построены с помощью программы *Systre* [33], q – сетки получены отображением разбиения гиперболической плоскости на минимальную поверхность с кубической симметрией, c – группа симметрии гиперболического разбиения является коксетеровской, N – порядковый номер сетки (в настоящее время известны трехпериодические сетки с N = 1-14532). Для каждой сетки в EPINET приведен символ Шлефли, координационная последовательность, а также матрица смежности свернутого графа. Например, алмазная сетка имеет символ sqc6.

Наиболее полная коллекция топологических типов собрана в комплексе компьютерных программ ToposPro в виде TTD-коллекции (Topological Types Database) [34]. TTD-коллекция включает в себя информацию из всех перечисленных выше баз, а также топологические типы некоторых кластерных группировок, 1- и 2-периодических атомных сеток и 3-периодических сеток интерметаллидов (всего 103041 типов сеток). Идентификация топологических типов проводится на основе набора из трех индексов (координационных последовательностей, точечных и вершинных символов). Часть 1.2. Способы кристаллохимического описания атомного строения интерметаллидов

1.2.1. Модель плотнейших шаровых упаковок

Структуры интерметаллидов можно рассматривать как упаковки сферических частиц, которые стремятся быть упакованными максимально плотно [35]. В основе теории плотнейших шаровых упаковок лежит геометрическая модель твердых шаров. Наиболее известными примерами плотнейшей трехмерно-периодической шаровой упаковки являются гранецентрированная кубическая (ГЦК) и гексагональная плотнейшая упаковки (ГПУ). ГПУ и ГЦК представляют собой двухслойные (ABA...) и трехслойные (ABCA...) упаковки треугольных сеток 3⁶ (рисунок 5).

Рисунок 5. ГПУ (а) и ГЦК (б) шаровые упаковки, представленные в виде сетки из треугольников 3⁶ (в).

1.2.2. Модель координационных полиэдров

В настоящее время кристаллохимиками широко используется метод описания структур интерметаллидов с помощью координационных полиэдров [36-38]. Координационный полиэдр (КП) атома – выпуклый многогранник, число вершин которого соответствует количеству ближайших соседей данного атома, т.е. его координационному числу (КЧ). Впервые метод описания структур ионных кристаллов в терминах координационных полиэдров был предложен Полингом в 1929 году. Далее в 1947 году Белов предложил использовать координационные полиэдры в виде строительных блоков для различных классов соединений [39].

С увеличением количества вершин число теоретически возможных топологически различных КП резко возрастает, однако большинство из них не реализуются в кристаллических структурах. КП чаще всего имеют только треугольные и четырехугольные грани, однако для структур интерметаллидов также известны КП с более сложными гранями.

1.2.3. Нанокластерное моделирование

В настоящее время одним из наиболее распространенных способов описания кристаллических структур интерметаллидов является их описание в терминах *нанокластеров* [40-51]. Нанокластеры представляют некоторые устойчивые группировки атомов, которые связаны друг с другом посредством прочных межатомных взаимодействий. Выделение нанокластеров в структурах интерметаллидов зачастую имеет субъективный характер, не опирающийся на анализ химических взаимодействий, а только на геометрию строительных блоков. Отсутствие единой схемы анализа структур интерметаллидов, который, как правило, проводится «вручную», приводит к ошибочным результатам моделирования сложных архитектур, поскольку разными авторами структура может быть представлена в виде набора различных кластеров, которые, кроме того, включают в себя не все атомы структуры. Например, в литературе известно несколько различных моделей строения структуры NaCd₂, однако до сих пор ни одна из них не является общепризнанной [6, 42-45].

Топологический метод выделения нанокластеров в структурах интерметаллидов любой сложности на основе строгого алгоритма был предложен в работах [45-51]. Нанокластерная модель определения состава и строения нанокластеров основана на следующих основных принципах:

1. Кристаллическая структура образуется из набора многослойных *первичных* нанокластеров, соответствующих оптимальным (фундаментальным) конфигурациям атомов.

21

2. Первичные нанокластеры в структуре характеризуются наиболее высокой точечной симметрией (их центры занимают наиболее высокосимметричные положения в элементарной ячейке).

3. Центральный атом первичного нанокластера обладает высокой координацией. Однако центр нанокластера может быть пустым, если при этом реализуются предыдущие принципы.

4. Первичные нанокластеры, формирующие структуру, не должны иметь общих внутренних атомов (взаимопроникать), но могут иметь общие внешние атомы.

5. Система первичных нанокластеров должна включать в себя все атомы структуры. В особых случаях отдельные атомы или малые атомные группировки играют роль заполнителей пространства между нанокластерами (*спейсеров*).

6. Первичные нанокластеры объединяются в супракластеры за счет межкластерных связей и обобщенных внешних атомов. Кристалл формируется последовательной конденсацией идентичных супракластеров в микроцепи, микрослои и, наконец, в микрокаркас, предопределяющий топологию сетки кристалла.

7. Если несколько моделей соответствуют принципам 1-6, то приоритетной является модель, образованная минимальным количеством первичных нанокластеров (принцип парсимонии), а базовая сетка (т.е. сетка центров тяжести нанокластеров) модели должна иметь одну из часто встречающихся топологий.

В работах [45-51] опубликованы результаты анализа некоторых структур интерметаллидов, которые были проанализированы в рамках описанного выше нанокластерного подхода. Краткий обзор данных соединений приведен в таблице 1. Из таблицы 1 видно, что, например, кубическая структура $ZrZn_{22}$ может быть представлена в виде комбинации центрированного икосаэдра (1@12) и центрированного полиэдра Фриауфа (1@16), которые связаны друг с другом по мотиву структуры фазы Лавеса MgCu₂ (**mgc-x**) (рисунок 4).

Соединение	Пр. гр	Тип нанокластера	Базовая сетка	Ссылка	
NaCd ₂	Fd3m	1@12@50 + 1@16@44	mgc-x	[45]	
ZrZn ₂₂	Fd3m	1@12+1@16	mgc-x	[46]	
Mg ₂ Al ₃	Fd3m	1@12@50 + 1@16@44	mgc-x	[47]	
Cd ₃ Cu ₄	$F\bar{4}3m$	1@16@52 + 1@12@49 +	mgc-x	[48]	
		0@6@16@24			
Li ₁₉ Na ₈ Ba ₁₅	P3	1@16@59@103+	Не определена	[49]	
		1@12@32@92			
Mg_2Zn_{11}	Pm3̄	1@12@32	рси	[50]	
Tm ₃ In ₇ Co ₉	Pm3	1@12@32	рси	[50]	
K ₉ NaTl ₁₃	Im3	1@12@32	bcu-x	[51]	
$K_8Na_3Tl_{13}$	R∃m	1@12@32	fcu	[51]	
La ₄ Mo ₇ Al ₅₁	P3m1	1@12@42	hex	[51]	
Sc ₅₇ Rh ₁₃	Pm3	1@12@42@92	bcu-x	[51]	

Нанокластерные модели для некоторых интерметаллидов

В рамках данной работы мы рассматриваем интерметаллиды, которые могут быть построены из нанокластеров с икосаэдрической симметрией. Это обусловлено тем, что интерметаллиды такого типа многочисленны, отличаются разнообразием строения, и в настоящее время активно изучаются [52-58]. Среди них особый интерес вызывают интерметаллиды, в которых оболочки нанокластеров в виде дельтаэдров² с икосаэдрической симметрией располагаются над темплатом – внутренним икосаэдром. Такие нанокластеры ранее были найдены в квазикристаллах [50, 59-65]. Другой важный класс – γ-латуни, в которых нанокластеры образованы

² Дельтаэдр – это полиэдр, все грани которого представляют собой треугольники.

четырьмя взаимопроникающими икосаэдрами [66]. Стабилизация икосаэдрических фаз обусловлена особенностями их зонной структуры (фазы Юм-Розери) [67, 68]. Кристаллическая структура таких соединений зависит от валентной электронной концентрации, равной отношению числа валентных электронов к числу атомов. Для анализа базовых сеток в указанных интерметаллидах особый интерес представляют фазы Лавеса [7, 69, 70], строение которых также кратко рассмотрено ниже. Часть 1.3. Некоторые семейства интерметаллических структур и кристаллохимические особенности их строения

1.3.1. Фазы Лавеса

Фазы Лавеса – интерметаллиды, образующиеся между металлами при отношении их атомных радиусов 1.05–1.67 Å. Такое отношение позволяет атомам разного размера плотнейшим образом заполнить пространство. В структурах фаз Лавеса общего состава AB_2 атомы A имеют $K \Psi_A = 16$ (4A+12B) и атомы B имеют $K \Psi_B = 12$ (6B+6A).

Структурные типы фаз Лавеса MgCu₂ [7], MgZn₂ [69] и MgNi₂ [70] родственны друг другу, что видно из следующего сопоставления [71]:

Фаза Параса	Последовательность		Тип каркаса, образуе-	
Wasa Jiabtta	плотно-упакованных слоев		мого атомами А	
MgCu ₂	ABC	(к)	Алмаз	
MgZn ₂	ABAC	(гк)	Вюртцит	
MgNi ₂	ABCBACBC	(ккгк)	Карборунд-Ш	

Эти соединения являются прекрасными примерами применимости различных подходов к описанию структур: как наложения сеток, в виде вязи полиэдров или упаковки полиэдров с заполнением всего пространства или, наконец, на основе плотнейших упаковок одинаковых шаров [71].

В структуре MgCu₂ (cF24, a = 7,048 Å, Z = 8) атомы Cu образуют тетраэдры Cu₄, соединенные друг с другом через вершины в трехмерный каркас, в пустотах которого расположены атомы Mg. Каждый атом Mg окружён фриауфовским координационным многогранником, у которого 16 вершин (12Cu ×2,92 Å и 4Mg ×3,05 Å). Cu имеет икосаэдрическое окружение (6Mg × 3,05 Å и 6Cu ×2,49 Å) (рисунок 6). Структура MgCu₂ схожа со структурой CaF₂ (флюорит) [72] и может быть представлена в виде ГЦК упаковки из атомов Mg, в которой одна половина тетраэдрических пустот занята атомами Mg, а другая – правильными тетраэдрами Cu₄, принятыми за одну структурную единицу. Другое описание MgCu₂ может быть сделано на основе СТ С (алмаз): атомы Mg в структуре располагаются по алмазному закону. В каждом оставшемся пустом тетраэдре расположен тетраэдр Cu₄, причем ребра тетраэдра из атомов Cu параллельны ребрам тетраэдра из атомов Mg [72].

Строительными элементами в структурах MgZn₂ (hP12, a = 5,18, c = 8,52 Å, Z = 4) и MgNi₂ (hP24, a = 4,815, c = 15,80 Å, Z = 8) являются колонки тетраэдров, соединенных друг с другом последовательно вершинами и основаниями [72]. В структуре MgZn₂ – колонки бесконечны (проходят через всю структуру) и имеют лишь треугольные перемычки [72], отделяющие пустоты, и, содержащие по два атома Mg. Координационный многогранник Mg – фриауфовский 16-вершинник [4 Mg (3,17 и 3,20 Å) и 12Zn (~3,04 Å)]. Атомы и Zn(1), и Zn(2) имеют икосаэдрическое окружение (6Mg и 6Zn) [73] (рисунок 7).

В MgNi₂ каждая колонка состоит только из четырех тетраэдров. Такие короткие колонки, сопрягаясь друг с другом, образуют общий каркас, в пустотах которого находятся пары атомов Mg. Координационные многогранники Mg(1), и Mg(2) – фриауфовский 16-вершинник [4 Mg (2,95 и 2,97 Å) и 12 Ni (2,82 – 2,83 Å)]. Атомы Ni(1), Ni(2) и Ni(3) имеют икосаэдрическую координацию (6Mg и 6Ni) [73] (рисунок 8).

Рисунок 6. Структура MgCu₂ (красным цветом выделены атомы Cu, формирующие тетраэдр Cu₄): а, б – полиэдры, образующие структуру – икосаэдр Cu@Cu6Mg6 (a), полиэдр Фриауфа Mg@Cu12Mg4 (б).

Рисунок 7. Структура MgZn₂ (красным цветом выделены атомы Zn, формирующие колонки из тетраэдров): а, б – полиэдры, образующие структуру – икосаэдр Zn@Zn6Mg6 (a), полиэдр Фриауфа Mg@Zn12Mg4 (б).

Рисунок 8. Структура MgNi₂ (красным цветом выделены атомы Ni, формирующие колонки из тетраэдров); а, б – полиэдры, образующие структуру – икосаэдр Ni@Ni6Mg6 (a), полиэдр Фриауфа Ni@Mg12Ni4 (б).

1.3.2. ү-Латунь

 γ -Латунь относится к особому семейству интерметаллидов. Она может быть представлена как сверхструктура ОЦК упаковок, имеющая период, равный утроенному периоду маленькой ячейки объемоцентрированного куба, и содержащая 52 атома (3³ × 2 – 2). Структура γ -латуни слегка деформирована вследствие компенсации вакантных мест, занимающих позиции (0,0,0) и (1/2,1/2,1/2) в кристаллической решетке, образовавшихся в результате удаления двух атомов из ячейки.

Структуру ү-латуни можно представить в виде объединения 26-атомных кластеров, построенных из последовательности оболочек [74] (рисунок 9а):

- 1) внутренний тетраэдр (IT);
- внешний тетраэдр, вершины которого находятся над гранями внутреннего тетраэдра (OT);
- 3) октаэдр, вершины которого расположены над ребрами внешнего тетраэдра (OH);
- 4) кубооктаэдр, вершины которого находятся над ребрами октаэдра (СО).

Альтернативное описание структуры γ-латуни основано на модели stella quadrangula [75] (рисунок 9б), а также на системе четырех взаимопроникающих икосаэдров [66], центры тяжести которых соответствуют вершинам внешнего тетраэдра (рисунок 9в), а вершины внутреннего тетраэдра соответствуют узлам пересечения четырех икосаэдров.

Рисунок 9. Три модели представления 26-атомного кластера γ-латуни: а –последовательность четырех вложенных полиэдров; б – stella quadrangula; в – система четырех взаимопроникающих икосаэдров.

Существуют также структуры ү-латуни с примитивной кубической (Р) и ромбоэдрической (R) ячейками [76-79].

Соединения типа γ-латуни образуются при значении валентной электронной концентрации (ВЭК), которая определяется отношением валентных электронов к числу атомов, равном 21/13 (e/a). Однако некоторые экспериментальные исследования показывают, что кубическая фаза γ-латуни имеет значения ВЭК в пределах

1,59-1,94 (e/a) [67, 68]. Так, ВЭК для Cu₅Zn₈ и Cu₉Al₄ равно 1.615 (21/13) е/а, а для Al₈V₅ – 1.94 е/а.

В системе Pd-Zn-Al была найдена фаза γ' -латуни (Pd_{1-x}Zn_x)₁₈(Zn_{1-y}Al_y)_{86-x} [66] с пространственной группой F43m, представленная как 2 × 2 × 2 сверхструктура γ -латуни Pd_{2+x}Zn_{11-x}. Согласно литературным данным [80], кластеры, формирующие структуру γ' -латуни (т.е. сверхструктуру γ -латуни), могут включать в себя следующие типы (рисунок 9, 10):

- 1) *ү*-латунь (26 атомов);
- 2) ВСС (27 атомов);
- 3) α-Мп (29 атомов);
- 4) Ti₂Ni (22 атома).

Рисунок 10. Три типа кластеров, формирующих структуру γ'-латуни: а – ВСС (27 атомов) представляет собой центрированный (СС) кластер γ-латуни; б – α-Мп (29 атомов) представляет собой центрированный кластер (СС) в виде последовательности вложенных полиэдров: тетраэдр (ОТ), усеченный тетраэдр (ТТ) и кубоокта-эдр (СО); в – Ti₂Ni (22 атома) в виде следующей последовательности вложенных полиэдров: октаэдр (ОН), тетраэдр (ОТ) и кубооктаэдр (СО).

Исследования кубических интерметаллидов, относящихся к типу γ-латуни, предполагают, что эти структуры близки к квазикристаллам, т.к. направление [110] в системе кубической γ-латуни параллельно оси 5-го порядка икосаэдрической или 10-го порядка додекаэдрической систем квазикристаллов [81-83]. Кроме того, со-гласно работе [84] комбинация кластеров γ-латуни и Ti₂Ni реализуется в классе ап-проксимантов икосаэдрических квазикристаллов Куо. К данному классу относят

сплавы переходных металлов Ti, Zr и Hf c Ni, Pd и Pt; эти структуры можно представить в виде двух взаимопроникающих алмазных сеток.

1.3.3. Квазикристаллы

Особенностями структуры квазикристаллов является сочетание осей симметрии 5-го, 7-го, 8-го, 10-го, 12-го и более высоких порядков, запрещенных в классической кристаллохимии, с дальним упорядочением, при отсутствии периодичности по трем пространственным измерениям. Со времен первоначального открытия икосаэдрического квазикристалла в 1984 году Д. Шехтманом [85] в быстрозакаленном сплаве Al-Mn синтезировано большое количество металлических сплавов, имеющих квазикристаллическую структуру. Они, как правило, состоят из атомов металла и (иногда) кремния: Al-Li-Cu, Al-Pd-Mn, Zn-Mg-Y, Al-Cu-Co-Si, Al-Ni-Co, Au-Na-Si и т.д.

Для приближенного описания строения квазикристаллов используют периодические структуры, аппроксимирующие атомное строение квазикристалла в ограниченной области пространства [86], такие структуры принято называть кристаллическими аппроксимантами. В структурном отношении они представляют собой трехмерные кристаллы, построенные из таких же атомных кластеров, что и соответствующий квазикристалл, но упакованных периодически. Таким образом, различие строения квазикристаллов и аппроксимирующих фаз заключается в способе организации дальнего порядка (квазипериодичность и периодичность), в то время как ближний порядок в окружении атомов изменяется незначительно.

Наибольшее распространение получили икосаэдрические квазикристаллы (ИКК), кластеры которых строятся из оболочек в форме икосаэдра и додекаэдра [87].

ИКК классифицируются по следующим критериям:

1) базисный элемент сплава;

2) электронная концентрация (e/a);

3) локальная атомная конфигурация (атомный кластер);

4) тип квазирешетки.

Согласно первому критерию, икосаэдрические квазикристаллы классифицируются в три группы структурных прототипов ИКК [88], а именно, сплавы на основе Al, на основе Zn и на основе Cd:

1. Al–Pd–Me (Me = Mn, Re, Ru, Os), Al–Cu–Me (Me = Fe, Ru, Os);

2. Zn–Mg–Re (Re = Y, Nd, Gd, Ho, Dy, La, Pr, Tb, Ce), Zn–Mg–Hf, Zn–Mg–Zr, Zn – Mg–Ga;

3. Cd–Me (Me = Ca, Yb), Cd–Mg–Ca, Cd–Mg–Re (Re = Y, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu).

Каждой группе ИКК соответствует определенное значение электронной концентрации и фактора атомного размера (δ). Отклонение в составе, приводящее к изменению е/а и δ (> 15%), нарушает стабильность икосаэдрических квазикристаллов [89]. Так, значение электронной концентрации квазикристалла со стехиометрическим составом Cd₂₅Mg₂₀Re₁₅ сильно отличается от системы Zn-Mg-Re [90], а замена Re в системе Zn₆₀Mg₃₀Re₁₀ не приводит к изменению электронной концентрации (e/a = 2.15).

Анализ системы Cd-Mg-Re показал, что Cd-Mg-Yb образует стабильное квазикристаллическое состояние [91]. На фазовой диаграмме состояния системы Cd-Yb [92] была найдена кубическая структура икосаэдрического квазикристалла Cd₆Yb [91] с пространственной группой Im $\overline{3}$ и параметром ячейки a = 1.564 нм. Подобная фазовая диаграмма наблюдалась для системы Cd-Ca, состав которой близок к CaCd₆, в работе [65] эта структура была идентифицирована как квазикристалл. Данный результат показал, что не только переходные, но и редкоземельные металлы образуют квазикристаллическое состояние, также было разрушено представление о том, что для образования ИКК требуется не менее трех различных элементов. Семейство, к которому принадлежат Cd₆Yb, CaCd₆ и т.д. обширно, и соотношение M:Cd не обязательно точно равно 1:6. Композиционные различия семейства MCd₆ вызваны наличием дополнительных атомов Cd, которые расположены в кубических междоузлиях Cd₈ [93]. Это приводит к возможности появления вакансий и разупорядочения. Авторы [93-96] на основании карт распределения электронных плотностей LnCd₆ рассматривают два типа разупорядочения, которые могут использоваться для описания позиционно неупорядоченных атомов Cd внутри додекаэдрической оболочки. Первый тип разупорядочения вызван вращением неупорядоченного тетраэдра вдоль оси второго порядка, что приводит к кубической конфигурации с наполовину заполненными позициями атомов Cd (рисунок 11а). Второй тип разупорядочения возникает вследствие триплетного расщепления вершин тетраэдра, когда оси симметрии третьего порядка тетраэдра не совпадают с пространственными диагоналями кубической элементарной ячейки, являющимися для нее также осями симметрии 3-го порядка (рисунок 11б). При максимальном расщеплении углов тетраэдра, электронная плотность будет сосредоточиваться в вершинах кубооктаэдра (рисунок 11в). Однако вследствие небольшого надлома квадратных граней кубооктаэдр преобразуется в икосаэдр, причем этот надлом происходит по непараллельным (неперекрывающимся) диагоналям противоположных квадратов и сопровождается укорочением этих диагоналей до размеров, примерно равных прочим ребрам прежнего кубооктаэдра.

Замена Cd на In и Ag в икосаэдрических квазикристаллах Cd₈₄Yb₁₆ и Cd₈₄Ca₁₆ приводит к формированию устойчивых ИКК In₄₂Ag₄₂Yb₁₆ и In₄₂Ag₄₂Ca₁₆ [65]. Это является убедительным доказательством того, что электронная концентрация является наиболее важным фактором в управлении стабильностью квазикристаллической структуры.

Следующим важным параметром, оказывающим влияние на стабильность ИКК, является фактор атомного размера

$$\delta = \frac{(r_A - r_B)}{r_A},$$

где r_A и r_B – атомные радиусы атомов А и В.

Так, для системы Zn-Mg-Al частичная замена атомов Zn (5%) на Mg приводит к изменению размеров кристаллической решетки, однако, при этом, не нарушается стабильность квазикристалла [97], максимальное значение δ не должно превышать 15%.

Рисунок 11. Модели тетраэдрического разупорядочения, найденные в структурах LnCd₆: а – первый тип разупорядочения; б – второй тип разупорядочения; в - второй тип разупорядочения с последовательным увеличением тройного расщепления вершин тетраэдра с образованием кубооктаэдрической конфигурации [93].

Существует три типа фундаментальных кластеров, которые образуют структуры квазикристаллов и их аппроксимантов:

1. Икосаэдрические квазикристаллы на основе Al с $1.6 \le e/a \le 1.9$ принадлежат к маккеевскому типу. Впервые кластер Маккея (рисунок 12) был обнаружен в системе α -Al-Mn-Si [63, 64].

2. Кластер Бергмановского типа (рисунок 13) впервые был обнаружен в структуре $Mg_{32}(Al,Zn)$ [62]. К данному типу относят ИКК на основе Zn с $2.1 \le e/a \le 2.4$. Аппроксиманты этих квазикристаллов, содержащие только треугольные грани и координационные полиэдры с координационными числами (КЧ) 12, 14, 15 и 16 [98], относят к фазам Франка-Каспера.

3. В икосаэдрических квазикристаллах сравнительно недавно (2000 г.) был открыт кластер Цая [65], который представляет собой 66-атомный нанокластер с

внутренней оболочкой в виде додекаэдра, охватывающей центральную тетраэдрическую группу атомов; внешняя 42-атомная оболочка кластера Цая соответствует оболочке маккеевского типа (рисунок 14). Особенностью таких квазикристаллов является то, что они могут существовать как бинарные системы Cd-Ca и Cd-Yb.

Рисунок 12. 54-атомный кластер Маккея: а – во второй оболочке 30 атомов занимают позиции над ребрами внутреннего икосаэдра, формируя икосододекаэдр (коричневые шары), а атомы икосаэдрической внешней оболочки расположены над двенадцатью пентагональными гранями икосододекаэдра; б – оболочки кластера Маккея: (1) – икосаэдр, (2) – икосододекаэдр, (3) – икосаэдр.

Рисунок 13. 44-атомный кластер Бергмана: а – во второй оболочке 20 атомов занимают позиции над гранями внутреннего икосаэдра, формируя додекаэдр (синие шары), а атомы икосаэдрической внешней оболочки расположены над двенадцатью пентагональными гранями додекаэдра; б – оболочки кластера Бергмана: (1) – икосаэдр, (2) – додекаэдр, (3) – икосаэдр.

Рисунок 14. 66-атомный кластер Цая: а – вторая оболочка (додекаэдр) покрывает координационную сферу центрального атома; б – 12 атомов занимают позиции над гранями внутреннего додекаэдра (синие шары), формируя икосаэдр (зеленые шары), а атомы икосододекаэдрической внешней оболочки расположены над 30 ребрами икосаэдра; в – оболочки кластера Цая:

(1) – тетраэдр, (2) – додекаэдр, (3) – икосаэдр, (4) – икосододекаэдр.

Часть 1.4. Моделирование структурообразования нанокластеров методом молекулярной динамики

Для поиска и отбора наиболее стабильных атомных конфигураций используют различные варианты алгоритмов глобальной оптимизации, в рамках которых находят глобальный минимум на поверхности потенциальной энергии (ППЭ). Наиболее глубокие минимумы поверхности потенциальной энергии соответствуют устойчивым геометрическим конфигурациям нанокластеров. Причем увеличение размера нанокластера приводит к возрастанию количества стационарных точек, энергии которых близки, в результате чего возникают трудности в выборе того или иного нанокластера.

Для теоретического исследования металлических нанокластеров широко применяют метод молекулярной динамики (ММД). Впервые метод молекулярной динамики упоминается в работе [99]; благодаря развитию вычислительной техники появилась возможность моделировать динамику молекулярных систем, состоящих из большого числа частиц. ММД представляет собой численный метод моделирования, который основан на расчете координат и скоростей атомов в процессе эволюции системы во времени. ММД позволяет сгенерировать совокупность конфигураций, которые распределены в соответствии с некоторой статистической функцией распределения, например, согласно микроканоническому распределению.

Для вычисления действующих сил между атомами, находящимися в силовом поле остальных атомов, решают уравнения движения Ньютона с использованием некоторого потенциала, который описывает их взаимодействие.
1.4.1. Моделирование нанокластеров на основе потенциала Леннарда-Джонса

Наиболее полно исследованы кластеры, взаимодействие между атомами которых отвечает потенциалу взаимодействия Леннарда-Джонса [100-111]. Потенциал Леннарда-Джонса для взаимодействия между атомами, находящимися на расстоянии г_{іі}, определяется следующей формулой:

$$\boldsymbol{U}(\boldsymbol{r}_{ij}) = \boldsymbol{4}\boldsymbol{\epsilon} \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right], \tag{1}$$

где σ – эффективный диаметр атома; *ε* – глубина потенциальной ямы.

В работах [100-102] было замечено, что структура с икосаэдрической симметрией является предпочтительной для кластеров при числе атомов N < 1000 с леннард-джонсовским взаимодействием. Кроме того, в работе [102] установлено, что при N = 10179 атомов (14 оболочка) происходит переход от структуры с икосаэдрической симметрией к структуре с симметрией кубооктаэдра. Согласно работам [100, 103, 104], кластеры аргона при N < 1500 имеют структуру с икосаэдрической симметрией, а в области N = 1500-3500 происходит переход к структуре кубической гранецентрированной решетки. Эксперименты по исследованию заряженных кластеров A_n^+ (A = Ne, Ar, Kr, Xe) [105-111] позволили заключить, что *магические*³ числа кластеров с разными сортами атомов зачастую не совпадают.

³ Магические числа кластеров – ряд натуральных чисел, соответствующих количеству атомов в кластере, при котором кластеры обладают повышенной стабильностью по сравнению с кластерами других размеров.

1.4.2. Моделирование нанокластеров на основе потенциала Клери-Розато

Для описания взаимодействия атомов переходных ГЦК и ГПУ металлов применяют многочастичный потенциал Клери-Розато [112]. Потенциальная энергия iго атома в этом случае находится с помощью выражения:

$$U_{i} = \sum_{j} Aexp\left(-p\left(\frac{r_{ij}}{r_{0}}-1\right)\right) - \sqrt{\sum_{j} \xi^{2} exp\left(-2q\left(\frac{r_{ij}}{r_{0}}-1\right)\right)},$$
 (2)

где A, p, q, ξ , r_0 – параметры потенциала; r_{ij} – расстояние между i-м и j-м атомами.

Потенциал Клери-Розато апробирован в ряде исследований и нашел широкое применение в моделировании структур нанокластеров, а также анализе свойств структур нанокластеров переходных и благородных металлов [113-116]. В качестве иллюстрации ниже нами приведены результаты моделирования некоторых нанокластеров, в которых методами молекулярной динамики с использованием потенциала Клери-Розато были исследованы их структуры и соответствующие им минимумы потенциальной энергии.

В работе [113] было показано, что нанокластеры Pd_N (N < 1000 атомов) и Au_N (N < 650 атомов) имеют икосаэдрическую симметрию (I) (рисунок 15а). Устойчивой конфигурацией Au_N (N > 650 атомов) является нанокластер с симметрией инододекаэдра (I-Dh) (рисунок 15б). Нанокластеры бинарной системы (PdAu)_N (N > 650 атомов) имеют симметрию кубооктаэдра (CO) (рисунок 15в).

Согласно [114], атомная структура нанокластеров бинарной металлической системы Cu_nAu_{38-n} ($0 \le n \le 38$) зависит от соотношения атомов данной системы. Из литературных данных следует, что структура гомоатомных нанокластеров Cu_{38} и Au_{38} соответствует нанокластеру с симметрией усеченного октаэдра. Для нанокластеров со стехиометрическим составом Cu_nAu_{38-n} ($4 \le n \le 12$) характерна гексагональная симметрия, для Cu_nAu_{38-n} ($13 \le n \le 17$) – пентагональная симметрия, а для состава Cu_nAu_{38-n} ($18 \le n \le 37$) – октаэдрическая.

Рисунок 15. Структуры нанокластеров с симметрией икосаэдра (а), ино-додекаэдра (б) и кубооктаэдра (в).

Часть 1.5. Соединения, образующиеся в системах Au-Zn, Au-Zn-Mo и Cu-In-Mn

Поскольку одной из задач нашего исследования явилось прогнозирование и синтез новых интерметаллидов, то в настоящей части мы рассмотрим системы с известными к настоящему времени соединениями, реализующиеся в системах Au-Zn, Au-Zn-Mo и Cu-In-Mn, в которых были обнаружены полученные нами интерметаллиды.

1.5.1. Двойные соединения системы Au-Zn

Фазовая диаграмма состояния для бинарной системы Au-Zn в интервале концентраций от 0 до 100% ат. % Zn представлена на рисунке 16 по данным обзорных работ [117-119].

Рисунок 16. Фазовая диаграмма бинарной системы Au-Zn [117].

Исследование характера взаимодействия Au и Zn, а также структур образующихся фаз приведены в ряде работ [117-130]. В таблице 2 указаны образующиеся фазы при взаимодействии Au и Zn [117]. Следует отметить, что до сих пор не определены кристаллические структуры интерметаллидов, принадлежащие системе Au-Zn с фазами α₁, β₁, δ, γ₃ и ε'.

Таблица 2

Фаза	Состав	Символ Пирсона	Прототип	Пр. группа
(Au)	0 ~ 33	cF4	Cu	$Fm\overline{3}m$
α ₃	10 ~ 19.5		Cu ₃ Pd	Рп2п или Рптп
α_1	20.5 ~ 28.5			
α ²	23~24	<i>tI</i> 64		I4 ₁ /acd
α_2	24.5 ~25.5	oC32		Abam (Cmca)
Au ₅ Zn ₃	37.5			Ibam
β'	38~57	cP2	CsCl	$Pm\overline{3}m$
β_1	49~51			
δ	56			
γ	62.5 ~76		Cu ₅ Zn ₈ /Cr ₅ Al ₈	
γ_2	75~76	cP32	H ₃ U	Pn3m
γ ₃	78~83.5			
3	84~89	hP2	Mg	P6 ₃ /mmc
ε'	84~86			
(Zn)	92.5 ~100	hP2	Mg	<i>P</i> 6 ₃ / <i>mmc</i>

Возможные фазы в системе Au-Zn [117]

В системе Au-Zn до начала наших исследований было известно одиннадцать стехиометрических соединений, кристаллографические параметры которых представлены в таблице 3. Три из них - Au₃Zn (пр. гр. *Acam*) [120], Au₅Zn₃ (пр. гр. *Ibam*) [120] и Au₃Zn (пр. гр. *I4*₁/*acd*) [121] – кристаллизуются в новых, а остальные – в

известных структурных типах. Однако, в большинстве случаев, авторами структурных работ не был проведен детальный кристаллохимический анализ полученных ими интерметаллидов. Исключение составляют Au₅Zn₈ (пр. гр. R3m) [122] и AuZn₃ ($Pm\overline{3}n$) [123]. Впервые в работе [124] была выявлена принадлежность Au₅Zn₈ (пр. гр. *Ibam*) к соединениям типа γ -латуни. Далее в [122] при помощи методов рентгеноструктурного и термического анализа было показано, что в интервале концентраций 60 до 66 ат. % Zn при 300°C образуется ромбоэдрическая структура γ -латуни; Кроме того, в структуре Au₅Zn₈ также был найден 26-атомный кластер γ -латуни (рисунок 17а). Согласно [123], в AuZn₃ ($Pm\overline{3}n$) были выявлены строительные блоки в виде икосаэдров (рисунок 176).

Таблица 3

Соелинение	Структурный тип	Пр.	Параметры ячейки, Å		
Соединские		группа	a	b	с
Au ₇₈ Zn ₂₂ [125]	Cu	Fm3 m	4.034	4.034	4.034
Au ₃ Zn [121]	Cu ₃ Pd	Pnnm	24.17	4.017	16.217
Au ₃ Zn [121]	Au ₃ Zn	I4 ₁ /acd	5.586	5.586	33.410
Au _{2.84} Zn _{1.16} [126]	SrPb ₃	P4/mmm	3.999	3.999	4.064
Au ₃ Zn [120]	Au ₃ Zn	Acam	5.574	5.583	16.616
Au ₅ Zn ₃ [120]	Au ₅ Zn ₃	Ibam	6.345	8.971	4.486
AuZn [127]	CsCl	Pm3m	3.190	3.190	3.190
Au ₅ Zn ₈ [122]	Cr ₅ Al ₈	R3m	13.134	13.134	8.110
AuZn ₃ [128]	UH ₃	Pm3n	7.92	7.92	7.92
Au ₁₂ Zn ₈₈ [129]	Mg	<i>P</i> 6 ₃ / <i>mmc</i>	2.812	2.812	4.372
Au _{2.5} Zn _{1.5} [130]	$Au(Au_{0.5}Zn_{0.5})_3$	Pmc2 ₁	6.345	8.971	4.486

Кристаллографические параметры соединений в системе Au-Zn

Рисунок 17. 26-атомный нанокластер γ-латуни, выделенный в структуре Au₅Zn₈ [122] (а); икосаэдры в виде строительных блоков в структуре AuZn₃ (б).

1.5.2. Тройные соединения систем Au-Zn-Mo и Cu-In-Mn

В системе Au-Zn-Mo до начала настоящих исследований не было известно ни одного интерметаллида. В свою очередь в системе Cu-In-Mn найдено три соединения: Cu₄InMn [131], Cu₂InMn [132] и Cu₂InMn [133] (таблица 4).

Таблица 4

Соелинение	Структурный тип	Пр. группа	Параметры ячейки, Å		
			а	b	С
Cu ₄ InMn [131]	MgZn ₂	<i>Р</i> 6 ₃ <i>тс</i>	4.971	4.971	7.940
Cu ₂ InMn [132]	Cu ₂ MnAl	$Fm\overline{3}m$	6.206	6.206	6.206
Cu ₂ InMn [133]	-	F43m	6.187	6.187	6.187

Тройные соединения в системе Cu-In-Mn

В работе [131] были проведены синтез, исследование кристаллической структуры и изучение магнитных свойств Cu₄InMn. В свою очередь для Cu₂InMn изучены только магнитные свойства [132, 133]. Согласно [131], кристаллическая структура Cu₄InMn принадлежит к гексагональной сингонии и представляет собой структурный тип MgZn₂ (фаза Лавеса). Структурный мотив Cu₄InMn может быть представлен в виде бесконечных цепочек Cu₄ или связывания координационных полиэдров в виде полиэдра Фриауфа и икосаэдра (рисунок 18).

Рисунок 18. Два представления структуры Cu₄InMn: а – в виде колонн из тетраэдров Cu₄, связанных друг с другом через общие вершины или грани; б – связывание полиэдров Фриауфа (Mn@Cu12In4 и In@Cu12Mn4) и икосаэдров (Cu@Cu6Mn3In3).

Глава 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Часть 2.1. Объекты исследования

В качестве объектов исследования нами были рассмотрены все известные к настоящему времени кристаллические структуры интерметаллидов, которые образованы атомами металлов, расположенными ниже границы Цинтля. Общий объем кристаллоструктурной информации (27972 интерметаллида) был получен из Банка данных по неорганическим соединениям (БДНС, выпуск 2014/2) [2] и базы данных Пирсона (2010/2011 гг.) [3]. Дополнительно была отобрана информация по интерметаллидам, которые содержат связные атомные фрагменты в виде икосаэдров, додекаэдров, кластеров Бергмана и γ-латуни (таблица 7).

Отбор структур (фактор расходимости R_f ≤ 10%) осуществляли при помощи комплекса программ ToposPro [19].

Таблица 7

Изученные интерметаллиды, содержащие определенные типы нанокластеров

Тип	Нанокластерные конфигурации		Первичные нанокластеры		
нанокластера	Количество нанокластеров	Количество интерметаллидов	Количество нанокластеров	Количество интерметаллидов	
Икосаэдр (<i>ico</i>)	5549	3600	1556	1528	
Додекаэдр (<i>dod</i>)	300	222	0	0	
Кластер Бергмана	218	183	164	137	
Кластер ү-латуни	8371	5918	702	576	

Кроме того, нами был проведен синтез и структурный анализ трех новых интерметаллидов $Au_{10}Mo_4Zn_{89}$, $AuZn_{2.1}$ и Cu_2InMn , а также моделирование методом молекулярной динамики монометаллических нанокластеров Cu_N (N = 4-100 атомов) и Ag_{26} .

Часть 2.2. Методы исследования

2.2.1. Кристаллохимический анализ интерметаллидов

Автоматизированный геометрический и топологический анализ кристаллических структур интерметаллидов с использованием комплекса программ ToposPro [19] включал следующие стадии:

(I) Расчет матрицы смежности структуры и выделение простейших полиэдрических структурных единиц с помощью программы *AutoCN* (§ 1.1.2.1).

(II) Расчет топологических индексов (координационная последовательность, точечный и вершинный символы) и классификация атомных сеток с помощью программы *ADS* (§ 1.1.2.2).

(III) Поиск нанокластерных фрагментов в атомных сетках с использованием алгоритма выделения конечных подграфов в бесконечных периодических графах [19].

(**IV**) Нанокластерное моделирование структур интерметаллидов (§ 1.2.3).

Для определения состава и строения нанокластеров, формирующих структуру интерметаллида, использовали нанокластерную модель (§ 1.2.3).

В соответствии с указанными выше принципами нанокластерного моделирования, рассмотрим подробнее структуру синтезированного нами соединения AuZn_{2.1}. Первым шагом идентификации нанокластеров является выявление их центральных атомов; согласно принципам 2-3 таковыми являются атомы Au3, находящиеся в наиболее симметричных позициях Уайкова *la* и KЧ = 10. В результате мы получаем не проникающие друг в друга *нанокластеры A* состава 1@10@38, содержащие 15 атомов Au и 34 атома Zn (рисунок 19а).

Повторяя процедуру для оставшихся атомов структуры, которые не принадлежат нанокластеру 1@10@38, находим *нанокластеры В* состава 1@12@43 с центральным атомом Au10 в наиболее симметричных позициях Уайкова 3*c* и KЧ = 12, содержащие 18 атомов Au и 37 атомов Zn (рисунок 19б). Оставшиеся атомы структуры (Zn11, Zn19, Zn26, Au5, Au14, Au15 и Au18) играют роль спейсеров. в виде двух разупорядоченных икосаэдров с центрами в позициях 6*d* (рисунок 20). Способ представления структуры AuZn_{2.1} путем объединения первичных нанокластеров 1@10@38 и 1@12@43 в строительные единицы состава AB₂, которые формируют супракластер, микроцепь и микрослой, показан на рисунок 21. Последовательная конденсация микрослоев порождает микрокаркас, предопределяющий топологию сетки кристалла (рисунок 22). Базовая сетка интерметаллида AuZn_{2.1} соответствует неизвестной к настоящему времени топологии с точечным символом $(3^{17}.4^{27}.5^{30}.6^{17})_3(3^3.4^3.5^6.6^{15}.8)(3^4.4^4.5^2)_6(3^9.4^{10}.5^2)_6$; КЧ узлов сетки равны 5, 7, 8 и 14.

а) б) Рисунок 19. Нанокластеры 1@10@38 состава Au@Zn10@Au14Zn24 (а) и 1@12@43 состава Au@Au1Zn11@Au17Zn26 (б) в структуре AuZn_{2.1}.

Рисунок 20. Разупорядоченные икосаэдры Zn@Zn8Au4 (а) и Au@Au4Zn8 (б).

a)

б)

в)

Рисунок 21. Конденсация нанокластеров 1@10@38 и 1@12@43 в супракластер AB₂ (а); связывание супракластеров AB₂ в микроцепь (б) и микрослой (в).

Рисунок 22. Упрощение структуры интерметаллида AuZn_{2.1} до 5,7,8,14-координированной базовой сетки с точечным символом $(3^{17}.4^{27}.5^{30}.6^{17})_3(3^3.4^3.5^6.6^{15}.8)(3^4.4^4.5^2)_6(3^9.4^{10}.5^2)_6.$

Поиск нанокластерных фрагментов в атомных сетках интерметаллидов осуществляли с использованием алгоритма выделения конечных подграфов в бесконечных периодических графах, реализованного в ToposPro [19]. Для нанокластерного фрагмента (графа нанокластера), выделенного в атомной сетке интерметаллида согласно принципу 1 нанокластерного анализа, мы используем термин *нанокластерная конфигурация*. Произвольный фрагмент атомной сетки интерметаллида, выделенный без учета принципов 1-7 нанокластерного анализа, мы называем *атомной конфигурацией* (рисунок 23).

Рисунок 23. Атомная сетка структуры NaCd₂ (а), красным цветом выделена нанокластерная конфигурация в виде 26-атомного кластера γ-латуни (б), а синим – 177-атомная конфигурация (в).

б)

B)

a)

2.2.2. Моделирование нанокластеров Cu_N (N = 4-100 атомов) методом молекулярной динамики

МД моделирование структур Сu_N проводили с использованием программного обеспечения Cluster Evolution [134]. Начальные конфигурации соответствовали кластерам Леннарда-Джонса [135]. Моделирование монометаллических Cu_N (N = 4-100 атомов) нанокластеров проводили в силовом поле, описываемом многочастичным потенциалом Клери-Розато [136], построенном в рамках модели сильной связи. Параметры потенциала Клери-Розато были взяты из работы [136]. Температуру в процессе моделирования определяли из средней кинетической энергии атомов, которую рассчитывали по алгоритму Верле в скоростной форме [137] с временным шагом $\Delta t = 1.0$ фс. Нанокластерные структуры меди были получены путем моделирования постепенного охлаждения частиц меди различного размера от 10 К до 0.5 К с шагом 0.5 К/пс. Дополнительно проводили релаксацию полученных структур при нулевой температуре в течение 10 пс. Процесс структурирования нанокластеров исследовали при постоянной энергии (микроканонический ансамбль). Моделирование микроканонического ансамбля проводили по алгоритму Берендсена [138].

2.2.3. Исходные вещества, методы синтеза и анализа интерметаллидов

Для приготовления образцов использовали следующие металлы в компактном состоянии со значениями номинальных частот \geq 99.9%: Au (0.3 г), Mo (0.3 г) и Zn (0.3г) – для синтеза Au₁₀Mo₄Zn₈₉, Au (0.3 г) и Zn (0.3г) – для синтеза AuZn_{2.1}, Cu (0.28 г), In (0.37 г) и Mn (0.15 г) – для синтеза Cu₂InMn.

Cu₂MnIn получали путем прямого сплавления трех исходных компонентов. Стадия загрузки металлов в танталовый контейнер сопровождалась последующей аргонно-дуговой сваркой. Далее контейнер перемещали в печь сопротивления с последующим нагреванием со скоростью 10°C/мин до 900°C. Длительность выдержки по достижении окончательной температуры составила 30 минут. Охлаждение образца проводили с шагом 0.2°C/мин до 350°C, после чего печь выключали. После завершения охлаждения до комнатной температуры образец был легко извлечен из танталового контейнера. Монокристаллы были извлечены механическим путем из фрагментированных сплавов с использованием оптического микроскопа Leica DM4000 M, Leica Microsystems Wetzlar GmbH. Рентгеновские дифракционные данные для структуры Cu₂InMn были получены при комнатной температуре (T = 298 K) на дифрактометре Kappa APEXII, Bruker AXS GmbH, оснащенном двухкоординатным CCD детектором с монохроматизированным источником MoK_α-излучения ($\lambda = 0.71073$ Å). Поглощение учтено эмпирически по программе SADABS [139]. Решение структуры прямым методом и уточнение анизотропных смещений атомов методом наименьших квадратов проводили с помощью программы SHELXL-97 [140].

Синтез интерметаллических соединений $Au_{10}Mo_4Zn_{89}$ и $AuZn_{2.1}$ проводили путем прямого сплавления соответствующих металлов с определенной навеской в электрической печи сопротивления в кварцевых эвакуированных ампулах в атмосфере аргона и выдерживали два часа ($Au_{10}Mo_4Zn_{89}$) и 12 часов ($AuZn_{2.1}$) при температуре ≈ 1000 °C. Далее для $Au_{10}Mo_4Zn_{89}$ температура была снижена до 430°C, после чего образец был выдержан при данной температуре в течение пяти дней. По истечении срока отжига ампулу с $Au_{10}Mo_4Zn_{89}$ закаливали в ледяной воде. Охлаждение $AuZn_{2.1}$ проводили в течение 16 дней. Съемка монокристаллов $Au_{10}Mo_4Zn_{89}$ и $AuZn_{2.1}$ проведена на дифрактометре Xcalibur, Oxford Diffraction Ltd, оснащенном детектором EOS, при комнатной температуре с использованием излучения MoK_{α} (λ = 0.71073Å). Первичную обработку дифракционных данных для $Au_{10}Mo_4Zn_{89}$ и $AuZn_{2.1}$ проводили с помощью программы CrysAlis [141]. Все расчеты по расшифровке структур $Au_{10}Mo_4Zn_{89}$ и $AuZn_{2.1}$ были проведены с помощью комплекса программ Jana2006 [142].

Расчеты зонной структуры $Au_{10}Mo_4Zn_{89}$ выполняли в рамках теории функционала плотности с использованием линеаризованного метода маффин-тин орбиталей (LMTO) в приближении атомной сферы (LMTO-ASA) в экранированном базисе сильной связи (TB-LMTO) [143]. В орбитальный базис были включены орбитали, соответствующие 5*s*-, 5*p*- и 5*d*-состояниям Au, 4*s*- и 4*p*-состояниям Zn, а также 5*s*-, сетке *k*-точек в обратном пространстве с числом точек $8 \times 8 \times 8$.

Часть 2.3. Результаты исследования

2.3.1. Кристаллохимическая систематика интерметаллидов

2.3.1.1. Топологическая и геометрическая классификация интерметаллидов

Распределение 27972 кристаллических структур интерметаллидов по наиболее распространенным топологическим типам представлено в таблице П. 1 приведены номенклатурные обозначения сеток (§ 1.1.2.3), примеры структур, координационные числа узлов и общее количество интерметаллидов. В таблице П. 2-4 приведена информация о распределении 27972 интерметаллидов и их топологических типов (2342 прототипа) по 14 решеткам Бравэ, кристаллическим классам, а также пространственным группам симметрии.

2.3.1.2. Классификация интерметаллидов по топологическим типам нанокластеров

Согласно строго определенному алгоритму, который основан на принципах нанокластерного моделирования (§ 1.2.3), мы проанализировали 27972 интерметаллида. При их анализе использовали кристаллографические данные, соответствующие упорядоченной модели строения, т.е. при расчете числа атомов в нанокластерах статистические позиции считали полностью заселенными основными атомами. Автоматизированная процедура выделения нанокластеров в структурах интерметаллидов позволила выделить все возможные атомные конфигурации в виде полиздрических и полиоболочечных нанокластеров. Результатом нанокластерной классификации интерметаллидов явилось создание нами базы данных 2017 топологических типов нанокластеров (TTN-коллекции). TTN-коллекция содержит следующую информацию по каждому нанокластеру:

– имя нанокластера представлено в виде линейной цепочки символов N1@N2@N3..., где N соответствует количеству атомов в оболочках 1, 2, 3...; сим-

вол «@» используется в качестве разделителя оболочек нанокластера. Топологически различные нанокластеры с одинаковым составом N1@N2@N3... приведены как model1, model2 и т.д.

структурно-топологические характеристики графа нанокластера (координаты атомов, атомный граф, количество вершин, граней, ребер);

- химический состав нанокластера;

– встречаемость нанокластера в структурах интерметаллидов (список кодов соединений в БДНС и базе данных Пирсона).

Например, нанокластер состава 1@12@32 имеет четыре топологические модификации, две из которых, $1@12@32_model1$ и $1@12@32_model3$, приведены на рисунке 24. Оба нанокластера являются двухоболочечными центрированными, состоящими из 12 и 32 атомов, однако их графы различны. В частности, нанокластер $1@12@32_model1$ реализуется в виде атомной конфигурации и первичного нанокластера в 25 и 2 интерметаллидах, соответственно.

Рисунок 24. Две топологические модификации нанокластера 1@12@32: а – нанокластер 1@12@32_model1 состава Hg@Hg12@Hg20Rb12 в Rb₃Hg₂₀; б – нанокластер 1@12@32_model3 состава Tl@Tl12@K26Na6 в Na₃K₈Tl₁₃.

2.3.1.2.1. Нанокластеры на основе икосаэдра

Для описания локального связывания икосаэдров (LB*ico*) нами предложен дескриптор Center@shell^{CN}_{v,e,f,b}, где Center = 0 или 1 для нецентрированных и центрированных нанокластеров, соответственно; shell – символ, обозначающий тип оболочки; CN – координационное число центрального нанокластера, которое определяется суммой a1 + a2 + a3 +..., где числа a1, a2, a3, ... указывают количество нанокластеров, однотипно связанных с центральным нанокластером. Существует четыре типа связывания икосаэдров друг с другом: через общие вершины, ребра, грани и межкластерные связи; указанные типы обозначаются символами v, e, f u b, соответственно. В качестве примера рассмотрим тип связывания икосаэдров в кристаллической структуре Mo₃Zr [144] (CT Cr₃Si). Согласно дескриптору 1@*ico*⁸⁺⁶_{f3}+*e*¹, центрированный икосаэдр в Mo₃Zr связан с восемью и шестью смежными икосаэдрами через одну общую треугольную грань (1@*ico*⁸_{f3}) и одно общее ребро (1@*ico*⁶_{e1}), соответственно (рисунок 25а). Указанным способом икосаэдры связаны друг с другом по мотиву объемно-центрированной кубической (**bcu-x**) базовой сетки (рисунок 256).

В таблице П. 5 и таблице П. 6 представлено распределение 1528 интерметаллидов, содержащих первичные нанокластеры в виде икосаэдров, по 21 топологическому типу базовых сеток. Для каждого топологического типа базовой сетки приведено номенклатурное обозначение, тип локального связывания икосаэдров, примеры кристаллических структур.

Химический состав 414 полностью упорядоченных бинарных и тернарных интерметаллидов, построенных из икосаэдров, представлен в таблице П. 7 и таблице П. 8.

Рисунок 25. Способ связывания икосаэдров в структуре Mo₃Zr: а – нанокластер Zr@Mo12 (слева) и составляющие (в центре) супракластера $1@ico_{f_3^{1+}e^1}^{8+6}$ (справа), где центральный икосаэдр связан с окружающими его икосаэдрами через общие грани ($1@ico_{f_3^1}^8$) и ребра ($1@ico_{e^1}^6$); б – последовательная конденсация супракластеров $1@ico_{f_3^{1+}e^1}^{8+6}$ в цепи, слои и трехмерный каркас, который предопределяет

bcu-х мотив базовый сетки.

2.3.1.2.2. Нанокластеры на основе пентагондодекаэдра

Распределение установленных *dod*-нанокластеров по точечным группам симметрии представлено в таблице П. 9. Для сравнения в ней дано также аналогичное распределение для 5549 *ico*-нанокластеров в 3600 структурах интерметаллидов. Приведены примеры первичных нанокластеров кристаллических структур с оболочками в виде дельтаэдров *D*32, *D*42 и *D*50. Основные структурные данные кристаллических структур, содержащих дельтаэдры *D*32, *D*42 и *D*50, которые образованы на дельтаэдрах-темплатах, приведены в таблице П. 10. Для выделенной группы кристаллических структур геометрические и топологические характеристики дельтаэдров *D*32, *D*42 и *D*50 приведены в таблице П. 11. В таблице П. 12 для трех структур с дельтаэдрами *D*32, *D*42 и *D*50 приведены координационные последовательности {N_k} атомов.

2.3.1.2.3. Нанокластеры на основе кластера Бергмана

Способы локального и глобального связывания первичных нанокластеров Бергмановского типа (§ 1.3.3) представлены в таблице П. 13. Также приведено общее количество интерметаллидов, относящихся к соответствующему топологическому типу локального связывания нанокластеров Бергмана. Для каждого топологического типа приведено номенклатурное обозначение, а также общее количество интерметаллидов, принадлежащих этому типу.

2.3.1.2.4. Нанокластеры на основе кластера у-латуни

В таблице П. 14 приведены модели построения 576 кристаллических структур интерметаллидов, которые содержат первичные нанокластеры типа γ-латуни (§ 1.3.2), номенклатурные обозначения базовых сеток, примеры структур, а также их пространственные группы симметрии и позиции Уайкова. В таблице П. 15 представлена информация о сравнительном структурном описании выделенной группы соединений, которые были предложены авторами оригинальных структурных работ и нами на основе нанокластерного анализа. Для каждого соединения приведен соответствующий числовой код, характерный для БДНС и базы данных Пирсона. Распределение химических элементов по полиэдрическим оболочкам кластера γлатуни приведено в таблице П. 16.

2.3.2. Результаты МД моделирования нанокластеров Си_N

В таблице П. 18 приведены геометрические и топологические характеристики монометаллических МД оптимизированных нанокластеров Cu_N, кроме того, в таблице П. 19 размещена информация о встречаемости в структурах интерметаллидов атомных конфигураций, топологически эквивалентных модельным нанокластерам Cu_N.

2.3.3. Особенности строения Au₁₀Mo₄Zn₈₉, AuZn_{2.1} и Cu₂InMn

Рентгеноструктурное исследование полученных образцов монокристаллов показало, что $Au_{10}Mo_4Zn_{89}$ и Cu_2InMn кристаллизуются в кубической сингонии, а $AuZn_{2.1}$ – в гексагональной сингонии. Кристаллографические данные и координаты атомов указанных структур приведены в таблице П. 20 и таблице П. 21, соответственно.

Для структуры Au₁₀Mo₄Zn₈₉ нами были рассчитаны плотность электронных состояний (DOS) и плотность заселенности перекрывания кристаллических орбиталей (–СОНР). Результаты расчетов DOS и –СОНР приведены на рисунке 26.

Рисунок 26. Рассчитанные DOS и –СОНР в структуре Au₁₀Mo₄Zn₈₉; уровень Ферми показан горизонтальной пунктирной линией.

Глава 3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Часть 3.1. Геометрико-топологическая систематика интерметаллидов

3.1.1. Распределение интерметаллидов по топологическим типам

Результаты топологической систематики 27972 интерметаллидов, отобранных из Банка структурных данных по неорганическим соединениям и базы данных Пирсона показывают, что они кристаллизуются в 2342 различных топологических типах. Подчеркнем, что топологический тип включает в себя атомные сетки, имеющие одинаковую топологию независимо от пространственной симметрии самой сетки, в связи с чем один топологический тип может включать в себя несколько структурных типов. В среднем на один топологический тип приходится 12 интерметаллидов. Распределение 27972 интерметаллидов по 2342 топологическим типам (таблица П. 1) показывает, что преобладают 12- (**fcu, hcp**), 14- (**bcu-x**), 12, 16- (**mgcx**) и 12, 12, 16- (**mgz-x**) координированные сетки (рисунок 27).

Сравнение распределений интерметаллидов по 14 решеткам Бравэ, кристаллическим классам, а также пространственным группам симметрии показывает, что менее симметричные структуры интерметаллидов встречаются реже, чем структуры с более высокой симметрией (таблицы П. 2-4). В свою очередь, распределение топологических типов интерметаллидов по 14 решеткам Бравэ (таблица П. 2) показывает, что низкосимметричные структуры (триклинные (*a*), моноклинные (*m*) и ромбические (*o*)) реализуются в 53% случаев (1240 соединений), в то время как высокосимметричные структуры (тетрагональные (*t*), гексагональные (*h*) и кубические (*c*)) характерны для 1102 представителей. Установлено, что кристаллографическая симметрия интерметаллидов *O_h* (*m* $\overline{3}m$) реализуется чаще всего (приблизительно в 30% случаев); *D_{6h}* (6/*mmm*) занимает второе место (18%), а *D_{4h}* (4/*mmm*) – третье (16%) место (таблица П. 3). Характерными кристаллическими классами топологических типов интерметаллидов являются *D_{2h}* (*mmm*), *C_{2h}* (2/*m*) и *D_{4h}* (4/*mmm*), которые реализуются соответственно в 32%, 14% и 12% случаев (таблица П. 3). Всего для кристаллических структур интерметаллидов и их топологических типов установлено соответственно 264 и 216 пространственных групп симметрии (таблица П. 4).

Рисунок 27. Наиболее часто встречающиеся сетки интерметаллидов и примеры соединений, в которых они реализуются: а – сетка атомов Са и Hg в Ca₃Hg – гранецентрированная кубическая решетка (fcu); б – сетка атомов Li и Hg в LiHg₃ – гексагональная плотнейшая упаковка (hcp); в – сетка атомов Tl и Bi в TlBi – объемноцентрированная кубическая решетка (bcu-x); г – сетка атомов Mg и Cu в фазе Лавеса MgCu₂ – (mgc-x); д – сетка атомов Mg и Zn в фазе Лавеса MgZn₂ – (mgz-x).

3.1.2. Коллекция топологических типов нанокластеров

Результаты проведенной нами систематики интерметаллидов по критерию сходства образуемых ими нанокластеров внесены в базу данных по топологическим типам нанокластеров комплекса ToposPro. В результате были получены следующие статистические данные:

 – общее число топологически различных нанокластеров равно 2017; число центрированных нанокластеров – 1269, нецентрированных – 748.

– количество оболочек в нанокластерах варьирует в диапазоне 1-4; число однооболочечных нанокластеров (координационных полиэдров) равно 1006, двухоболочечных – 857, трехоболочечных – 150 и четырехоболочечных – 4. На примере анализа химического состава простых координационных полиэдров – тетраэдра, треугольной бипирамиды, октаэдра, куба и додекаэдра можно видеть, что химический состав КП не однозначно определяет его форму (рисунок 28, таблица П. 22). Так, например, в таблице 21 показано, что Аl является наиболее распространенным элементом в формировании октаэдра (19.6%) и тетраэдра (10.7%), в формировании треугольной бипирамиды (9.5%) и куба (6.3%) Al занимает третье место. Однако следует заметить, что если в формировании тетраэдра, треугольной бипирамиды, октаэдра и куба чаще всего выступают атомы p-, d-, f- металлов, то для додекаэдра – атомы *s*-металлов. Далее (§ 3.2.1.2 и 3.2.4.6) нами будет подробно проведен анализ химического состава нанокластеров в виде икосаэдра и кластера γ -латуни (двухоболочечный нанокластер). Очень редкие четырехоболочечные нанокластеры были найдены в Pt₆₄Cd_{326.4} (0@Cd4@Cd18Pt4@Cd54Pt4@Cd136Pt36, 256 атомов) [145], Gd₁₁₇Fe₅₂Ge₁₁₂ (Gd@Fe12@Gd24Ge18@Gd48Ge38@Gd78Ge72Fe24, 315 атомов) [146], Cu₉Ga₄₆V₁₁ (Pr@Co12Sn6@Pr24Sn18@Pr54Sn32@Pr72Sn96Co24, 339 атомов) [147] и Pr₁₁₇Co₅₇Sn₁₁₂ (Ga@Ga12@Ga48V8@Ga80V18Cu36@ Ga156Cu18 V32, 409 атомов) [148].

– типичными внутренними полиэдрами, на которых основаны полиоболочечные нецентрированные нанокластеры, являются полиэдры в форме октаэдра (35%), двух вложенных тетраэдров (22%), тетраэдра (21%) и треугольной бипирамиды (7%); полиоболочечные центрированные нанокластеры чаще всего основаны на атомах с координационными полиэдрами в форме икосаэдра (28%), 14-вершинника (12%), 11-вершинника (10%) и 10-вершинника (9%) (рисунок 29).

 в большинстве случаев встречаемость нанокластеров в структурах интерметаллидов определяется их размерами – чем меньше число атомов в нанокластере, тем чаще его встречаемость.

Рисунок 28. Встречаемость КП в виде тетраэдра (а), треугольной бипирамиды (б), октаэдра (в), куба (г) и додекаэдра (д) в интерметаллидах в зависимости от их химического состава.

Рисунок 29. N-вершинники (черные полиэдры) в системе двухоболочечных центрированных нанокластеров (вторые оболочки нанокластеров не показаны): а – 14-вершинники Rh@Rh6Sn6Li2 в структуре Li₈Rh₇Sn₈ [149]; б – икосаэдры Fe@Fe12 в Sm₁₂Fe₁₄Al₅ [150]; в – 11-вершинники Co@Al10Co1 в Co₄Al₁₃; г – 10вершинники в Sb@Sb1Cd2Ba7 в Ba₂₁Cd₄Sb₁₈ [151].

Часть 3.2. Моделирование интерметаллидов как ансамблей нанокластеров

3.2.1. Икосаэдрические конфигурации

Икосаэдр (*ico*), лежащий в основе *ico*-нанокластеров, является 12-вершинником с 30-ю треугольными гранями и 20-ю ребрами.

Наличие локальных нанокластерных конфигураций со структурой икосаэдра было установлено для 3600 структур интерметаллидов. В рамках данной работы было установлено, что только 1528 интерметаллидов (43 топологических типа) могут быть построены из икосаэдров, причем подавляющее большинство (1506 структур, 32 топологических типа) интерметаллидов построены из одного типа икосаэдров.

3.2.1.1. Особенности локальной и глобальной топологии связывания икосаэдров

Для поиска дополнительных корреляций между 1528 интерметаллидами нами была рассмотрена топология базовых сеток икосаэдров, где узлы сетки совпадают с центрами масс этих икосаэдров, а ребра соответствуют связям между ними. Группу конденсированных между собой икосаэдров можно рассматривать в виде более сложного уровня их структурной локальной организации (*супракла*- *стер*) (§ 2.3.1.2.1). В таблице П. 5 и таблице П. 6 показано, что 1528 интерметаллидов могут иметь различные типы базовых сеток и локального связывания икосаэдров.

3.2.1.1.1. Интерметаллиды, построенные из одного типа икосаэдров

Ниже представлены статистические данные по распределению параметров локального (таблица 8) и глобального (таблица 9) связывания икосаэдров в 1506 интерметаллидах. Видно, что преобладают $1@ico_{f_3^1+e^1}^{2+6}$ (рисунок 30) и $1@ico_{f_3^1+e^1}^{8+6}$ (рисунок 25) с 8- (**hex**) и 14- (**bcu-x**) координированными базовыми сетками.

Таблица 8

LBico	Базовая сетка	Количество структур	Встречаемость, %
$1@ico_{f_3^1+e^1}^{2+6}$	hex	766	50.9
$1@ico^{8+6}_{f^1_3+e^1}$	bcu-x	427	28.4
$1@ico_{f_3^1}^6$	crs	100	6.6
$1@ico_{f_3^1+v^1+e^1}^{1+3+6}$	tca	81	5.4
$1@ico_{f_3^1+e^1+v^1}^{2+2+4}$	hex	39	2.6
$1@ico_{f_3^1+e^1}^{3+6}$	ncb	22	1.5
Другие		71	4.6

Способы локального связывания икосаэдров в интерметаллидах

Центрированный <i>ісо</i>			Нецентрированный ісо			
Базовая	Кол-во	Встречае-	Базовая Кол-во Встреч		Встречае-	
сетка	структур	мость, %	сетка	структур	мость, %	
hex	809	54.0	hex	7	77.8	
bcu-x	437	29.2	lcy	1	11.1	
crs	100	6.7	bcu-x	1	11.1	
tca	81	5.4				
ncb	22	1.5				
pcu	19	1.3				
fcu	14	0.9				
hxl	7	0.5				
dia	5	0.3				
$(3^6.4^{12}.5^3)$	2	0.1				
sal	1	0.1				

Распределение топологий базовых сеток интерметаллидов

Рисунок 30. Топология связывания икосаэдров Fe@Fe6Ta6 в супракластер $1@ico_{f_3^1+e^1}^{2+6}$ по **hex** мотиву в структуре Fe₂Ta [152] (CT MgZn₂).

Ниже подробно рассмотрены наиболее важные топологические типы связывания икосаэдров в структурах интерметаллидов.

14-координированные сетки

Приведенные данные в таблице П. 5 показывают, что 14-координированная базовая сетка **bcu-x** икосаэдров реализуется в 437 кристаллических структурах интерметаллидов, которые описываются топологическими типами Mo₃Zr (427 структур) [144], WAl₁₂ (9 структур) [153] и Nb(Cu_{0.5}Ga_{0.5}) (1 структура) [154].

В структурах топологического типа Mo₃Zr формируется супракластер $1@ico_{f_3^{1+}e^1}^{8+6}$. (рисунок 25, § 2.3.1.2.1). Локальное связывание икосаэдров в супракластер $1@ico_{b^6+b^2}^{8+6}$ найдено в девяти структурах топологического типа WAl₁₂ (рисунок 31); только в одной структуре Nb(Cu_{0.5}Ga_{0.5}) найден супракластер $1@ico_{e^1+b^4+b^1}^{2+8+4}$ (рисунок 32).

Рисунок 31. Нанокластер Al@W12 в структуре WAl₁₂ (слева) и составляющие (в центре) супракластера $1@ico_{b^6+b^2}^{8+6}$ (справа), где центральный икосаэдр связан с восемью и шестью смежными ему икосаэдрами межкластерными связями $(1@ico_{b^6}^8 u \ 1@ico_{b^2}^6).$

Рисунок 32. Нанокластер Ga@Ga4Nb8 в Nb(Cu_{0.5}Ga_{0.5}) (слева) и составляющие (в центре) супракластера $1@ico_{e^1+b^4+b^1}^{2+8+4}$ (справа), где центральный икосаэдр связан с двумя смежными ему икосаэдрами через общие ребра ($1@ico_{e^1}^{2}$) и с двенадцатью икосаэдрами межкластерными связями ($1@ico_{b^4+b^1}^{8+4}$).

12-координированные сетки

Способы связывания центрированных икосаэдров по ГЦК (**fcu**) мотиву достаточно редко реализуется в интерметаллидах (всего 14 структур). В топологических типах CeRu₂Mg₅ (1 структура) [155], Cu₂GaSr (2 структуры) [156], Ni₂SrGe (1 структура) [157], Ni₂BaGe (1 структура) [158] (СТ Li₂BaSi) и AlAu₄ (9 структур) [159] реализуются супракластеры $1@ico_{f_{2}^{2}+e^{1}}^{6+6}$, $1@ico_{v^{1}}^{12}$ и $1@ico_{f_{3}^{1}+v^{1}}^{6+6}$ (рисунок 33).

Рисунок 33. Способы связывания супракластеров по ГЦК-мотиву: а – супракластер $1@ico_{f_3^{12}+e^1}^{6+6}$ в структурах Cu₂GaSr, Ni₂SrGe и Ni₂BaGe; б – супракластер $1@ico_{v^1}^{12}$ в CeRu₂Mg₅; в – супракластер $1@ico_{f_3^{1}+v^1}^{6+6}$ в AlAu₄.

Способ связывания икосаэдров по мотиву **tca** реализуется в 81 структуре топологического типа TaCo₂ [160] (CT MgNi₂). Согласно формуле локального связывания икосаэдров $1@ico_{f_3^1+v^1+e^1}^{1+3+6}$ в структуре TaCo₂, центральный икосаэдр связан с одним смежным ему икосаэдром через одну общую треугольную грань ($1@ico_{f_3^1}^1$), с тремя икосаэдрами – через одну общую вершину ($1@ico_{v^1}^3$) и с шестью икосаэдрами – через одно общее ребро ($1@ico_{e^1}^6$) (рисунок 34).

Рисунок 34. Топология связывания икосаэдров Co@Co6Ta6 в супракластер $1@ico_{f_2^1+v^1+e^1}^{1+3+6}$ по **tca** мотиву в структуре TaCo₂.

9-координированные сетки

В 22 структурах топологических типов Ni₄Zn₂₂ (8 структур) [161] (СТ Zn₉(Zn_{0.5}Fe_{0.5})₂Fe₂) и Cu₅Zn₈ (14 структур) [162] реализуется 9-координированная (**ncb**) сетка центрированных икосаэдров с топологией локального связывания икосаэдров в виде $1@ico_{f_3^{1+}v^1}^{3+6}$. Следует отметить, что структуры типов Ni₄Zn₂₂ и Cu₅Zn₈ также могут быть представлены в виде объединения 26-атомных нанокластеров γ -латуни по ОЦК мотиву (рисунок 35). Детальный анализ структур, включающих нанокластеры γ -латуни, приведен ниже (§ 3.2.4).

Рисунок 35. Топология связывания икосаэдров Ni@Zn12 в супракластер $1@ico_{f_3^1+v^1}^{3+6}$ по **ncb** мотиву в структуре Ni₄Zn₂₂.

8-координированные сетки

В 809 интерметаллидах, относящихся к топологическим типам Fe₂Ta (766 структур) [152], K₂Hg₇ (2 структуры) [163], PuCu₆ (39 структур) [164] (СТ СеСu₆) и Co₂Al₅ (2 структуры) [165], выделены икосаэдры, которые связаны по мотиву примитивной гексагональной решетки (**hex**). Установлено четыре типа локального связывания икосаэдров: $1@ico_{f_3}^{2+6} + e^1$ (Fe₂Ta), $1@ico_{b^{12}+e^1}^{2+6}$ (K₂Hg₇), $1@ico_{f_3}^{2+2+4} + v^1$ (PuCu₆) и $1@ico_{f_3}^{2+6} + (Co_2Al_5)$. Способы связывания икосаэдров в соответствующие типы супракластеров по мотиву **hex** представлены на рисунке 30, 36.

7-координированные сетки

Локальное связывание икосаэдров в супракластер 1@ $ico_{e^1+v^1}^{3+4}$ найдено в двух структурах NdTi₃(Sn_{0.1}Sb_{0.9})₄ and SmTi₃(Sn_{0.1}Sb_{0.9})₄ [166] по мотиву неизвестной до настоящего времени топологии унинодальной сетки (точечный символ 3⁶.4¹².5³) (рисунок 37).

Рисунок 36. Способы связывания икосаэдров Hg@Hg6K6, Al@Al6Co6 и Cu@Cu9Pu3 в соответствующие типы супракластеров по hex мотиву в структурах K₂Hg₇, Co₂Al₅ и PuCu₆, соответственно.

Рисунок 37. Топология связывания икосаэдров Ti@Ti4Sb6Nd2 в супракластер $1@ico_{e^1+v^1}^{3+4}$ по мотиву новой 7-координированной базовой сетки с точечным символом $3^6.4^{12}.5^3$ в структуре NdTi₃(Sn_{0.1}Sb_{0.9})₄.

6-Координированные базовые сетки **crs**, **pcu**, **hxl** и **lcy** икосаэдров найдены в 127 структурах интерметаллидов. Связывание икосаэдров в супракластер 1@*ico*⁶_{f3}по **crs** мотиву реализуется в топологических типах Ti₂Ni (68 структур) [167], Gd₄RhIn (32 структуры) [168] (рисунок 38а). В структурах топологического типа Ca₃Ag₈ (19 структур) [169] супракластеры 1@*ico*⁶_{f3} собраны по мотиву примитивной кубической решетки (**pcu**) (рисунок 386). Нецентрированные икосаэдры, найденные в Y₅Ag₃Cu₁₂ (1 структура) [170], собраны по мотиву **lcy** (рисунок 38в).

Рисунок 38. Способы связывания икосаэдров по мотивам 6-координированных базовых сеток: а – способ связывания супракластеров $1@ico_{f_3}^6$ по **сгз** мотиву; б – способ связывания супракластеров $1@ico_{f_3}^6$ по **рси** мотиву; в – способ связывания супракластеров $0@ico_{f_3}^6$ по **lcy** мотиву.

Кроме того, 6-координированные супракластеры $1@ico_{f_3}^6$, $1@ico_{v^1+e^1}^{4+2}$, $1@ico_{f_3}^{4+2}$, $1@ico_{f_3}^{2+4}$ образуют слои **hxl** в топологических типах Sr₂Ni₃ (1 структура) [171], Yb₂Ag₇ (2 структуры) [172], Zr₂Ni₇ (2 структуры) [173], Al_{2.88}Ta_{2.66}V_{1.46} (1 структура) [174] и Sr₂Rh₂In₃ (1 структура) [175]. В свою очередь, благодаря системе связей между **hxl** слоями, образуется трехмерный каркас (рисунок 39).

Рисунок 39. Способы связывания супракластеров в слои hxl: а – супракластер $1@ico_{f_3^2}^6$ в Sr₂Ni₃; б – супракластер $1@ico_{v^1+e^1}^{4+2}$ в Yb₂Ag₇; в – супракластер $1@ico_{f_3^1+e^1}^{4+2}$ в Al_{2.88}Ta_{2.66}V_{1.46}; г – супракластер $1@ico_{f_3^2+e^1}^{2+4}$ в Sr₂Rh₂In₃.

3.2.1.1.2. Интерметаллиды, построенные из нескольких типов икосаэдров

В 22 структурах (8 топологических типов) интерметаллидов реализуется способ связывания нескольких типов икосаэдров (таблица П. 6). Восемь структур топологических типов Mn₃In [176] и Au₆(Au_{0.5}In_{0.5})₆In [177] построены из двух типов икосаэдров одинакового или схожего состава: Mn@Mn9In3 (×2) и Au@Au6In6 + Ag@Au9In3, соответственно, по мотиву **ncb**; во всех случаях LB*ico* соответствует $1@ico_{f_3^1+v^1}^{3+6}$. Кроме того, эти восемь структур могут быть представлены в виде комбинации 26-атомных кластеров γ -латуни. Остальные структуры построены из двух (10 структур) или трех (4 структуры) типов икосаэдров с различными типами базовых сеток.

3.2.1.2. Химический состав икосаэдров

Распределение элементов по оболочкам икосаэдров для 414 полностью упорядоченных бинарных и тернарных интерметаллидов представлено в таблице П. 7 и таблице П. 8, соответственно.

Структуры интерметаллидов содержат икосаэдры двух типов: в виде 12атомных (пустых) и 13-атомных (центрированных) нанокластеров. В свою очередь, нанокластеры со структурой икосаэдра могут включать практически любой элемент таблицы Менделеева (рисунок 40). В бинарных интерметаллидах наиболее часто реализуются нанокластеры с химическим составом $A@A_6+M_6$ и $A@M_{12}$, а в тернарных – $A@M^{1}_{6}+M^{2}_{6}$. Нанокластеры со структурой икосаэдра $A@M_{12}$ и $A@A_6+M_6$ центрированы чаще всего меньшими по размерам атомами A; отношение радиусов r_A/r_M для них равно ≈ 0.9 , что соответствует плотной упаковке сферических атомов.

H	1																He
Li	Be											В	С	N	0	F	Ne
Na	Mg											Al	Si	Ρ	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	L	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds								
_		_															
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu		
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Рисунок 40. Атомы, составляющие нанокластер икосаэдра. Штриховка верхней и нижней части каждой ячейки таблицы означает, что данный атом может выступать соответственно в качестве центрального (А) и атома оболочки (М) икосаэдра. Граница Цинтля выделена красными линиями.

3.2.1.3. Взаимосвязь между топологическими параметрами и химическим составом нанокластеров

Установлены следующие особенности взаимосвязей между химическим составом и топологическими параметрами икосаэдров:

1. Локальная топология связывания икосаэдров предопределяет их базовую сетку. Так, зная, что центральный икосаэдр связан с двумя смежными икосаэдрами через одну треугольную грань и с шестью другими смежными икосаэдрами – через одно общее ребро, что соответствует типу $1@ico_{f_3^{1+e^1}}^{2+6}$, то однозначно можно сделать заключение о том, что топология базовой сетки икосаэдров соответствует **hex** (таблица П. 5). В свою очередь, обратная задача приводит к нескольким возможными вариантам – способ связывания икосаэдров по мотиву **hex** реализован в структурах с четырьмя различными LB*ico*, среди которых вероятность реализации $1@ico_{f_3^{1+e^1}}^{2+6}$ составляет 94.6%.

2. Интерметаллиды, принадлежащие к одному и тому же топологическому типу, характеризуются одинаковой локальной и глобальной топологией. Однако структуры с одинаковой локальной и глобальной топологией могут принадлежать как к одному, так и к разным топологическим типам.

3. Топология базовых сеток первичных нанокластеров тесно связана с химическим составом этих нанокластеров. Например, в 94% реализуется **bcu-х** мотив связывания икосаэдров с гомоатомными оболочками A@M12, а икосаэдры с составом A@A6 + M6 чаще всего (76%) собраны по мотиву **hex** (таблица 10).

Таблица 10

Состав икосаэдра	Базовая сетка
$A@A_6+M_6$	hex (158), crs (27); tca (21); pcu (1)
A@M ₁₂	bcu-x (84), ncb (3); fcu (2)
$A@A_9+M_3$	hex (12); fcu (2), dia (1)
$A@A_8+M_4$	hxl (4)
$A@A_7+M_5$	dia (1)
$A@A_3+M_9$	ncb (2)
$0@M_{6}^{1}+M_{6}^{2}$	hex (7)
$0@M_{8}^{1}+M_{4}^{2}$	bcu-x (1)
$A@M^{1}_{6}+M^{2}_{6}$	pcu (17), crs (12), hex (21), fcu (2), sql (1), hxl (1)
$A@M^{1}_{9}+M^{2}_{3}$	fcu (5)
$A@A_8 + M^1_2 + M^2_2$	fcu (1)
$A@A_7 + M_2^1 + M_3^2$	hex (8)
$A@A_6 + M^{1}_3 + M^{2}_3$	crs (17)
$A@A_4 + M_6^1 + M_2^2$	hex (1)
$A@A_3 + M_5^1 + M_4^2$	dia (1)
$A@A_2 + M_4^1 + M_6^2$	hxl (1)
$A@A + M^{1}_{5} + M^{2}_{6}$	dia (2)

Встречаемость (в скобках) базовых сеток в интерметаллидах с соответствующим составом

3.2.2. Додекаэдрические конфигурации

Додекаэдр (*dod*), лежащий в основе выделяемых *dod*-нанокластеров, является 20-вершинником с 12-ю пятиугольными гранями и 30 ребрами. Нами найдены 222 кристаллические структуры интерметаллидов, содержащих связные атомные фрагменты в виде додекаэдров (281 кристаллографически и/или химически различных *dod*-нанокластеров).

3.2.2.1. Симметрия додекаэдрических нанокластеров

Максимальная симметрия додекаэдра, как и икосаэдра, соответствует $m\overline{35}$. В кристаллических структурах додекаэдры, как и икосаэдры, занимают позиции, соответствующие кристаллографическим точечным группам, являющимся подгруппами $m\overline{35}$, а именно $T_h(m\overline{3})$, или $D_{3d}(\overline{3}m)$, или позиции, соответствующие их подгруппам. Проведенный анализ показал, что в структурах интерметаллидов симметрия *dod*-нанокластеров описывается 14 кристаллографическими точечными группами, являющимися подгруппами группы симметрии $m\overline{35}$. Не обнаружены додекаэдры с симметрией D_2 (222), которая также соответствует подгруппе группы $m\overline{35}$ (таблица П. 9).

Особенности строения *dod*-нанокластеров (281 и 19 нецентрированных и центрированных нанокластеров, соответственно) представлены ниже:

– максимально допустимая кристаллографическая симметрия додекаэдра T_h ($m\overline{3}$) реализуется чаще всего (в 26% случаев), C_{2h} (2/m) занимает второе место (15%), а D_{3d} ($\overline{3}m$) – третье место (13%). Десимметризованные нанокластеры (точечная группа C_1) отсутствуют (таблица П. 9).

– dod-нанокластеры могут быть нецентрированными – 0@M20 (рисунок 41), но если они центрированы, то центры занимают либо самые большие атомы А структуры (состав нанокластера A@M20), либо простейшие полиэдры, например, тетраэдры, образованные атомами меньшего размера В (состав B4@M20), или состоящие из тех же атомов, что и атомы додекаэдрической оболочки (состав M4@M20) (рисунок 42).

3.2.2.2. Кристаллические структуры, содержащие оболочки в виде дельтаэдров *D*32, *D*42, *D*50

Dod-нанокластеры являются темплатами, на поверхности которых формируются три типа высокосимметричных оболочек в виде дельтаэдров *D*32, *D*42 и *D*50.

Рисунок 41. Додекаэдрический кластер 0@Ве20 в структуре Ru₃Be₁₇ [178] в виде связанных атомов (слева) и в виде полиэдра (справа).

Рисунок 42. Заполненные *dod*-нанокластеры K@Ge20 в структуре K₈In₆Ge₄₀ [179] (слева) и Cd4@Cd20 с внутренним тетраэдром в структуре YbCd₆ [180] (справа).

Нанокластеры Бергмана с дельтаэдром *D*32 также являются темплатами, на поверхности которых формируются различные типы высокосимметричных оболочек. Пример нанокластера Бергмана с дельтаэдром *D*92 (соответствующий классу P = 1 Каспера и Клуга) рассмотрен в [181].

Далее приведены примеры кристаллических структур, содержащих дельтаэдры D32, D42 и D50, образованные на додекаэдрах-темплатах; основные структурные данные для этих соединений приведены в таблице П. 10. Как видно из этой таблицы, кристаллические структуры обладают в основном кубической симметрией и характеризуются широкой областью изменения параметров ячейки от a = 11.337 до a = 31.871 Å и объема ячейки (от 1457.12 до 32375.74 Å³) в интерметаллидах Ru₃Be₁₇ [178] и Eu₄Cd₂₅ [182], соответственно. При этом структура Eu₄Cd₂₅ с индексом Пирсона *cF*1416 и последовательностью Уайкоффа $g^{12}fe^{6}c$ (с 20-ю независимыми атомами) является одной из самых сложных структур интерметаллидов. Для выделенной группы кристаллических структур геометрические и топологические характеристики дельтаэдров *D*32, *D*42 и *D*50 приведены в таблице П. 11.

В таблице П. 12 для трех структур с дельтаэдрами D32, D42 и D50 приведены координационные последовательности {N_k} атомов. Значения координационных последовательностей атомов для k = 1 и 2, равные 20 и 32 (структура K₈In₆Ge₄₀ [179]), а также 20 и 50 (структура Yb₃Zn₁₈ [183]), указывают на присутствие нано-кластера, образованного на додекаэдре, содержащем в центре крупные атомы (К и Yb).

Структуры с оболочками в виде дельтаэдров D32.

В структурах K₈In₆Ge₄₀ [179] и Cs₃₀Na₃Sn₁₆₂ [184] найдены *dod*-нанокластеры K@Ge20 и Cs@Sn20 с оболочками в виде дельтаэдров *D*32 (рисунок 43). Центры нанокластеров занимают в кубической и тетрагональной ячейке наиболее симметричные позиции 2*a* и 2*b* и характеризуются симметрией $m\bar{3}$ и mmm. В структуре K₈In₆Ge₄₀ однослойные *dod*-нанокластеры K@Ge20 являются первичными нанокластерами, а атомы оболочки *D*32 (K и In) располагаются между связанными нанокластерами K@Ge20. В структуре Cs₃₀Na₃Sn₁₆₂ первичными нанокластерами являются двухслойные *dod*-нанокластеры Cs@Sn20@Cs12Sn20 с оболочками *D*32. Нанокластеры образуют первичные цепи, распространяющиеся в направлении [001] и расположенные со сдвигом на *c*/2.

Рисунок 43. Внешние оболочки *D*32 над додекаэдром: а – структура K₈In₆Ge₄₀, в оболочке 12 атомов (белые шары) располагаются над гранями додекаэдра, а атомы Ge (черные шары) и In (серые шары) – над вершинами додекаэдра; б – структура Cs₃₀Na₃Sn₁₆₂, в оболочке 12 атомов (белые шары) располагаются над гранями додекаэдра, а атомы Sn (черные шары) – над вершинами додекаэдра.

В обоих случаях самые большие атомы, входящие в состав соединения (К и Cs), центрируют додекаэдры, а также располагаются в оболочке *D*32 над гранями додекаэдра, тогда как атомы Ge, In и Sn находятся над вершинами додекаэдра. Координационные числа атомов в оболочке равны 5 и 6.

Структуры с оболочками в виде дельтаэдров D42.

Dod-нанокластеры с оболочками в виде дельтаэдров *D*42 обнаружены в кубических структурных типах Ru_3Be_{17} (рисунок 44а) и Y_3Cd_{18} [185] (рисунок 44б), а также в тригональной структуре $Ca_3(Cd_{17}Al)$ [186]. Симметрия нанокластеров ($m\overline{3}$ и $\overline{3}$) также максимальна для соответствующих пространственных групп. В кубической структуре Ru_3Be_{17} *dod*-нанокластер является нецентрированным. В кубической структуре Y_3Cd_{18} додекаэдрические нанокластеры содержат тетраэдры из атомов Cd, которые занимают три различных положения, и эти же атомы формируют додекаэдрическую оболочку. В тригональной структуре $Ca_3(Cd_{17}Al)$ *dod*нанокластеры содержат тетраэдры из атомов Al, которые занимают фиксированное положение.

Рисунок 44. Внешние оболочки *D*42 над додекаэдром: а – структура Ru₃Be₁₇, в оболочке атомы Ru (белые шары) располагаются над гранями додекаэдра, атомы Be (черные шары) – над ребрами додекаэдра; б – структура YbCd₆, в оболочке атомы Yb (белые шары) располагаются над гранями додекаэдра, атомы Cd (черные шары) – над ребрами додекаэдра.

Во всех нанокластерах самые большие атомы, входящие в состав соединений (Ru, Y, Ca), располагаются над гранями додекаэдра, а остальные атомы (Be и Cd) располагаются над центрами ребер додекаэдра. Координационные числа атомов в оболочке равны 5 и 6.

Во всех трех структурах двухслойные *dod*-кластеры с дельтаэдрами *D*42 являются первичными нанокластерами и образуют ОЦК-упаковку. Отметим, что все структуры, содержащие оболочки этого типа, известны как аппроксиманты квазикристаллов или родственные им типы.

Структуры с оболочками в виде дельтаэдров D50.

Третий тип дельтаэдрической оболочки (*D*50) встречается в кубических структурах Yb₃Zn₁₈ (рисунок 45а), Ce₃(Au₁₄Sn₃) [187] (рисунок 45б), Eu₄Cd₂₅ и Pr₃Cd₁₈ [188], принадлежащих семейству аппроксимантов MCd₆ (M = Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y и Ca). Нанокластеры обладают максимально возможной симметрией $m\overline{3}$ и 23 и занимают в элементарных ячейках позиции 2*a*.

Рисунок 45. Внешние оболочки *D*50 над додекаэдром: а – структура Yb₃Zn₁₈ (YbZn₆), в оболочке атомы Yb (белые шары) располагаются над гранями додекаэдра, атомы Zn (черные шары) – над вершинами и ребрами додекаэдра; б – структура Ce₃(Au₁₄Sn₃), в оболочке атомы Ce (белые шары) располагаются над гранями додекаэдра, атомы Au (черные шары) и Sn (серые шары) – над вершинами и ребрами додекаэдра.

В структуре Ce₃(Au₁₄Sn₃) *dod*-нанокластер является нецентрированным. В Yb_3Zn_{18} и Al-допированном соединении $Yb_3(Zn,Al)_{18}$ заполненные *dod*-нанокластеры равновероятно содержат как самые большие атомы, входящие в состав соединения (Yb), так и простейшие полиэдры из атомов, которые формируют икосаэдрическую оболочку.

Во всех структурах двухслойные *dod*-нанокластеры с оболочкой *D*50 являются первичными нанокластерами.

Как и в рассмотренных выше дельтаэдрических оболочках, самые большие атомы оболочки *D*50 располагаются над гранями додекаэдра, а остальные атомы располагаются и над вершинами, и над центрами ребер додекаэдра. Обнаруженная ранее в икосаэдрических нанокластерах 50-атомная *ε*-оболочка имеет такую же симметрию и топологическую структуру [189, 190].

3.2.3. Конфигурации в виде кластеров Бергмана

В 137 интерметаллидах нами выделены первичные нанокластеры Бергмановского типа. Способы локального связывания кластеров Бергмана приведены в таблице П. 13. Следует отметить, что топология связывания кластеров Бергмана друг с другом аналогична рассмотренным выше мотивам связывания икосаэдров. Кластеры Бергмана также являются темплатами, на поверхности которых формируются различные типы высокосимметричных оболочек в виде дельтаэдров *D*80, *D*86, *D*92, *D*98, *D*102 и *D*110 (рисунок 46). Такие дельтаэдры могут быть представлены последовательностью вложенных полиэдров (таблица 11).

Рисунок 46. Трехоболочечные нанокластеры с внутренним ядром в виде кластера Бергмана: а -0@12@32@80 в Na₁₂₈Au₈₁Ga₂₇₅ [191]; б - 0@12@32@86 в K₄₉Tl₁₀₈ [192]; в - 0@12@32@92 в K₄₉Tl₁₀₈; г - 1@12@32@98 в Li_{33.3}Ba_{13.08}Ca_{2.96} [193]; д - 0@12@32@102 в CaCd₆ [65]; е - 0@12@32@110 в Au_{115.29}Ca₂₄Sn_{34.81} [194].

Дельтаэдры D80, D86, D92, D102 и D110 в виде последовательности вложенных полиэдров

Тип	Последовательность вложенных полиодоов									
дельтаэдра	последоватсявноств вложенных полиздров									
<i>D</i> 80	усеченный икосаэдр (<i>tic</i>) + додекаэдр (<i>dod</i>)									
D86	54-вершинник (54-v) + додекаэдр (<i>dod</i>) + икосаэдр (<i>ico</i>)									
D92	усеченный икосаэдр (<i>tic</i>) + додекаэдр (<i>dod</i>) + икосаэдр (<i>ico</i>)									
D102	икосододекаэдр (<i>ido</i>) + ромбоикосидодекаэдр (<i>ric</i>) + икосаэдр (<i>ico</i>).									
D110	икосододекаэдр (<i>ido</i>) + куб (<i>cub</i>) + ромбоикосидодекаэдр (<i>ric</i>) + икосаэдр									
	(<i>ico</i>).									

3.2.4. Конфигурации в виде кластеров ү-латуни

Наличие локальных областей в виде 26-атомных кластеров γ-латуни (§ 1.3.2) было установлено для 5918 структур интерметаллидов; 5918 структур интерметаллидов отнесены к 150 топологическим типам, т.е. группам структур, которые имеют изоморфные атомные сетки.

Нанокластерный анализ 5918 интерметаллидов показал, что 26-атомный кластер γ-латуни реализуется в качестве первичных нанокластеров всего в 576 структурах (37 топологических типов). Таким образом, кластер γ-латуни можно рассматривать в виде строительных блоков менее чем в 10% случаев.

Было обнаружено, что 26-атомный кластер ү-латуни обладает самостоятельной устойчивостью – при различном составе исследуемых соединений ү-конфигурация может быть представлена в виде самостоятельного 26-атомного нанокластера с внутренним тетраэдрическим ядром 0@4 или в качестве составной части первичного нанокластера с тремя типами внутренних оболочек: 0@4, 0@8 и 1@14. Модели построения 576 кристаллических структур интерметаллидов приведены в таблице П. 14.

3.2.4.1. Нанокластеры с внутренним 0@4 ядром

Двухоболочечные нанокластеры γ -латуни с внутренним тетраэдрическим ядром могут быть двух типов – 0@4@22 (рисунок 9) и 0@4@26 (рисунок 47).

Рисунок 47. 30-Атомный первичный нанокластер 0@In4@Ce6Pd8In12 (0@4@26) в структуре Ce₂₀Pd₃₆In₆₇ [195]. Атомы In, формирующие полиэдры IT и CO, выделены зеленым и красным цветами, соответственно, атомы Ce (OH) выделены желтыми цветом, а атомы Pd (OT) – розовым. Четыре дополнительных атома Pd (синие шары) расположены над треугольными гранями кубооктаэдра (CO).

0@4@22 первичные нанокластеры

Первичные нанокластеры γ-латуни с внутренним тетраэдрическим ядром реализуются в структурах с I-, P- и F-ячейками.

Структура Cu₅Zn₈ с І-ячейкой имеет три альтернативные модели:

1. Упаковка первичных 26-атомных 0@4@22 нанокластеров по мотиву 14координированной **bcu-х** сетки (рисунок 48а).

2. Способ связывания центрированных икосаэдров 1@12 по мотиву 9-координированной **ncb** сетки (рисунок 48б).

3. Упаковка нецентрированных тетраэдров и октаэдров в позициях $\overline{4}3m$ и $\overline{4}2m$, соответственно. Кроме того, отдельные атомы структуры Cu₅Zn₈ в позициях 3m выполняют роль спейсеров. Способ связывания тетраэдров и октаэдров представлен в виде 10, 18-координированной сетки на рисунке 48в.

Рисунок 48. Три модели представления структуры Cu₅Zn₈ с I-ячейкой (слева) и базовые сетки (справа); а – упаковка 0@4@22 нанокластеров (дополнительные шесть контактов каждого узла для наглядности удалены); б – способ связывания центрированных икосаэдров 1@12; в – упаковка тетраэдров (*tet*), октаэдров (*oct*) и спейсеров.

Нанокластеры 0@4@22 в структурном типе Ti₂Ni [167] упакованы по алмазному закону (**dia-x**). Центры тяжести нанокластеров первой координационной сферы располагаются в вершинах тетраэдра, а второй координационной сферы – в вершинах усеченного тетраэдра, формируя таким образом 4 + 12 = 16-координированныую топологию структуры алмаза (рисунок 49).

86

Рисунок 49. Нанокластерная модель строения структуры Ti₂Ni: a - 26-атомный нанокластер γ-латуни 0@Ni4@Ti22; атомы Ti, формирующие полиэдры OT и OH, выделены зеленым и желтым цветами, соответственно; б – два конденсированных нанокластера; общие атомы выделены желтым цветом; в – способ связывания четырех нанокластеров, центры тяжести которых образуют **dia-x**; общие атомы одной пары нанокластеров выделены желтым цветом, а зеленым цветом – остальные три пары нанокластеров.

Интерметаллиды, принадлежащие к структурному типу Mn₅Ni₂Bi₄ [196], представляют собой ГЦК-упаковку (**fcu**) нанокластеров 0@4@22 (рисунок 50). Каждый 0@4@22 нанокластер связан с 12-ю соседними эквивалентными ему нанокластерами, что приводит к формированию 12-координированной базовой сетки.

Рисунок 50. 26-атомный 0@Мп4@Ni4Bi6Mn12 нанокластер γ-латуни, выделенный в структуре Mn₅Ni₂Bi₄ (слева); два связанных нанокластера (справа), нанокластеры связаны друг с другом одним общим атомом Mn, который находится на поверхности внешних 22-атомных оболочек. Два неэквивалентных атома Bi (Bi2 и Bi3), выходящих за пределы второй оболочки нанокластера, выполняют роль спейсеров.

87

Следующим примером связывания нанокластеров ү-латуни по мотиву ГЦК служит группа структур, принадлежащих к структурному типу Gd₄RhIn [168] (рисунок 51).

Рисунок 51. 26-атомный 0@In4@Gd22 нанокластер γ-латуни, выделенный в структуре Gd₄RhIn (слева), атомы Gd, формирующие полиэдры ОТ и OH, выделены зеленым и синим цветами, соответственно; два связанных нанокластера (справа), нанокластеры связаны друг с другом одним общим атомом Gd, который находится на поверхности внешних 22-атомных оболочек. Два неэквивалентных атома Rh, выходящих за пределы второй оболочки нанокластера, выполняют роль спейсеров.

Упаковка нанокластеров 0@4@22 по мотиву примитивной кубической решетки (**pcu**) реализуется в 236 структурах типа Th₆Mn₂₃ [197] (рисунок 52).

Нанокластер 0@4@30 выделен в кристаллических структурах интерметаллидов типа Al_{7.56}Pd₁₈Zn_{74.44} [66], который может быть представлен в виде следующей последовательности вложенных полиэдров: IT + OH + CO + TT, где TT – усеченный тетраэдр (рисунок 53). Соотношение нанокластеров 0@4@22 и 0@4@30 в Al_{7.56}Pd₁₈Zn_{74.44} составляет 3:1.

Рисунок 52. Нанокластерная модель строения структуры Th₆Mn₂₃: а – нанокластер 0@Mп4@Mg10Th12, атомы Mg, формирующие полиэдры ОТ и OH, выделены зеленым и синим цветами, соответственно; б – два конденсированных нанокластера, общие атомы и спейсеры выделены желтым и зеленым цветами, соответственно; в – способ связывания восьми нанокластеров, центры тяжести которых образуют **рси** сетку.

Рисунок 53. Нанокластер 0@Al4@Pd6Zn24, выделенный в структуре Al_{7.56}Pd₁₈Zn_{74.44}; атомы Zn, формирующие полиэдры OH, CO и TT, выделены синим, красным и серым цветами, соответственно.

В структурном типе Li₁₃Na₂₉Ba₁₉ [198] помимо двух 0@4@22 нанокластеров (0@Li4@Li22 и 0@Na4@Na6Ba16) реализуются два Ва-центрированных полиэдра Фриауфа Ba@Ba4Na12 и один Na-центрированный икосаэдр Na@Na6Ba6.

0@4@26 первичные нанокластеры

Первичный нанокластер состава 0@4@26 представлен в виде комбинации вложенных полиэдров: IT + OT + OH + CO + ET, где ET – внешний тетраэдр, вершины которого расположены над треугольными гранями CO (рисунок 47). Данный тип нанокластера реализуется благодаря тому, что связи IT-ET значительно сильнее, чем связи между внутренним тетраэдрическим ядром и второй 26-атомной оболочкой нанокластера 0@4@26.

3.2.4.2. Нанокластеры с внутренним 0@6 ядром

В структурах γ -латуни с Р- и F-ячейками 26-атомные нанокластеры 0@4@22 могут сосуществовать с другими типами двухоболочечных нанокластеров. Типичным таким «соседом» является нанокластер 0@6@28, который представлен в качестве составной части 22-атомного кластера Ti₂Ni (рис 54а). Следует отметить, что нанокластер 0@6@28 включает 22-атомный кластер Ti₂Ni (рисунок 54б) к которому добавляются в качестве составной части 12 атомов, формирующих усеченный тетраэдр (TT). Расстояния атомов TT до вершин внутреннего октаэдра меньше, чем расстояния между атомами внутри этого октаэдра.

Путем вращения внутреннего октаэдра и тетраэдра, нанокластеры 0@6@28 и 0@4@30 могут трансформироваться друг в друга, что обуславливает явление изомерии между указанными нанокластерами.

В структурном типе Cd₅Ni [199] нанокластеры 0@4@22 и 0@6@28 собраны по мотиву ОЦК-упаковки (**bcu-x**).

Рисунок 54. 22-атомный кластер Ti₂Ni в виде последовательности вложенных полиэдров OH + OT + CO (a); нанокластер 0@6@28 в структуре Cd₅Ni (б); атомы, формирующие полиэдры OH, OT, и CO кластера Ti₂Ni, выделены синим, зеленым и красным цветами, соответственно; двенадцать дополнительных TT атомов нанокластера 0@6@28 отмечены серым цветом.

В кристаллических структурах типа β -Al_{67.4}Cu_{14.3}Cr_{18.3} [200] реализуются кластеры 0@4@22 и 0@6@28 в соотношении 2:1; спейсеры в виде полиэдра Фриауфа Cu@Cu12Al4 расположены в пустотах между нанокластерами 0@4@22 и 0@6@28. В структурах типа Na₆Tl [201] нанокластеры 0@4@22, 0@4@24 и 0@6@28 реализуются в соотношении 2:1:1.

Нанокластер 0@6@32 с внутренним октаэдрическим ядром реализуется в структурах типа Ce₃Ge_{10.72}Pt_{23.28} [202]. Внешняя 32-атомная оболочка может быть представлена в виде комбинации EC + TO (рисунок 55а), где EC – внешний куб, а TO – 24-вершинник в виде усеченного октаэдра. В структурах типа Mg₆Pd [203] найден нанокластер 0@6@40, в котором внешняя 40-атомная оболочка представлена в виде комбинации OT + CO, оставшиеся 24 атома соответствуют сильно искаженным TO (или TT) + TT (рисунок 55б).

92

Рисунок 55. Двухоболочечные нанокластеры с октаэдрическим ядром: а – нанокластер 0@Pt8@Ge4Pt28 (0@6@32) в структуре Ce₃Ge_{10.72}Pt_{23.28}; б – нанокластер 0@Mg6@Mg36Pd4 (0@6@40) в структуре Mg₆Pd; атомы Pd и Mg полиэдров ОТ и СО выделены зеленым и красным цветами, соответственно.

3.2.4.3. Нанокластеры с внутренним 0@8 ядром

Первичные нанокластеры, основанные на 0@8 ядре, могут существовать в виде двух вложенных тетраэдров, правильного или искаженного куба. Структуры, содержащие нанокластеры с внутренним 0@8 ядром, не относятся к фазам Юм-Розери, однако имеют непосредственное к ним отношение на нанокластерном уровне их рассмотрения. Для того, чтобы показать эти отношения, можно использовать представление пустот центров нанокластеров в виде полиэдров Вороного-Дирихле (рисунок 56). Размеры граней ПВД двух вложенных тетраэдров IT + OH значительно отличаются друг от друга. Так, в структуре Cu₅Zn₈ телесные углы (Ω) шестиугольных и треугольных граней, которые соответствуют вершинам IT и OT, равны 21.3% и 3.7% от угла 4 π стерадиан, соответственно (рисунок 56а). Внутреннее ядро в виде искаженного куба было найдено только в одном структурном типе Ba₁₆Na₂₀₄Sn_{322.38} [204] со значениями телесных углов равными Ω (IT) = 13,7 % и Ω (OT) = 10,2% (рисунок 56б). В структурном типе Ce₆Cd₃₇ [205] также реализуется разупорядоченный куб (рисунок 56в). В структурных типах TmRuGa₃[206] и BaHg₁₁ [207] реализуется ядро 0@8 в виде правильного куба (рисунок 56г).

Рисунок 56. Пустоты центров нанокластеров с внутренним ядром 0@8 в виде полиэдров Вороного-Дирихле: а – внутреннее ядро Zn4Cu4 в структурах типа Cu₅Zn₈ [162]; б – Na4Sn4 в Ba₁₆Na₂₀₄Sn_{322.38} [204]; в – Cd8 в Ce₆Cd₃₇ [205]; г – Ga8 в TmRuGa₃ [206].

На Рисунок 57 представлены возможные варианты вторых типов оболочек нанокластеров 0@8@N. В структурных типах $Ba_{16}Na_{204}Sn_{322.38}$ и Ti_8In_5 [208] реализуется 34-атомная оболочка, которая может быть представлена в качестве последовательности вложенных полиэдров: OH + CO + TT + ET, где TT и ET – усеченный тетраэдр и внешний тетраэдр, соответственно (рисунок 57а). Вторые оболочки нанокластеров 0@8@N в структурных типах TmRuGa₃ и Ce₆Cd₃₇ содержат 26 и 38 атомов, соответственно (рисунок 576-г). 26-атомная оболочка представлена в виде OH + CO + EC, если принять внутреннее 0@8 ядро за единичный атом, то получим структуру типа NaCl. В структурном типе BaHg₁₁ реализуется нанокластер

93

0@8@42, внешняя 42-атомная оболочка которого представляет собой последовательность вложенных полиэдров ОН + CO + TC, где TC – 24-атомный усеченный куб (рисунок 57д).

Рисунок 57. Двухоболочечные нанокластеры: а – нанокластер 0@Sn4Na4@Ba4Na18Sn12 (0@8@34) в структуре Ba₁₆Na₂₀₄Sn_{322.38} (атомы OH CO, TT, и ET выделены серым, коричневым, красным и желтым цветами, соответственно); б – нанокластер 0@Ga8@Tm12Ga8Ru6 (0@8@26) в структуре TmRuGa₃ (атомы OH, CO и EC выделены синим, красным и желтым цветами, соответственно); в – нанокластер 0@Cd8@Cd32Ce6 (0@8@38) в структуре Ce₆Cd₃₇; г – нанокластер 0@Pt8@Ge14Pt24 (0@8@38) в структуре Ce₃Ge_{10.72}Pt₂₃ (атомы OH, EC и TO выделены синим, желтым и красным цветами, соответственно); д – нанокластер 0@Hg8@Ba6Hg36 (0@8@42) в структуре BaHg₁₁ (атомы OH, CO и TC выделены синим, красным и желтым цветами, соответственно).

3.2.4.4. Центрированные нанокластеры

Для ряда структур характерна реализация центрированных нанокластеров (+CC), основанных на конфигурации 26-атомного кластера *γ*-латуни.

Нанокластер 1@8@34, выделенный в структурном типе $Ir_{7+7\delta}Zn_{97-11\delta}$ [209], включает 27-атомный кластер ВСС (рисунок 58а) к которому добавляются в качестве составной части 16 атомов ТТ и ЕТ (рисунок 58б). Нанокластер 1@14@40, выделенный в структуре (Fe,Ni)Zn_{6.5} [210], может быть представлен в виде последовательности 1@(IT + OT + OH)@CO + 28-вершинник (рисунок 58в).

Рисунок 58. 27-атомный кластер ВСС (а); нанокластер Zn@Zn8@Ir4Zn30 (1@8@34) в структуре Ir₇₊₇₈Zn₉₇₋₁₁₈ (б); нанокластер Fe@Fe10Zn4@Zn40 (1@14@40) в структуре (FeNi)Zn_{12.7} (в).

Нанокластер 1@16@44, выделенный в структурном типе NaCd₂ [6], является составной частью 29-атомного кластера типа α-Мп (рисунок 59).

Рисунок 59. 29-атомный кластер α-Mn (a); нанокластер Na@Cd16@Cd20Na24 (1@16@ 44) в структуре NaCd₂ (б).

3.2.4.5. Сравнительный анализ нанокластерной и полиэдрической моделей

Анализ приведенных выше нанокластеров показал, что во многих случаях они могут быть представлены в виде комбинации вложенных полиэдров. Описание нанокластеров в терминах координационных полиэдров является полезным для понимания взаимоотношения между различными типами нанокластеров (рисунок 60). Эти взаимоотношения могут быть описаны тремя типами операций: (I) "↔" обмен некоторых вложенных полиэдров в последовательности; (II) "⇔" замена вложенных полиэдров; (III) "+" добавка вложенного полиэдра.

Рисунок 60. Отношения между кластерами типа ү-латуни.

Результаты сравнения нанокластерных и полиэдрических моделей (таблица П. 15) представлены в виде следующих уровней сходства:

1. Нанокластерная модель и модель вложенных полиэдров являются идентичными для пяти структур с I-, Р- и F-ячейками.

2. Частичное сходство нанокластерных и полиэдрических моделей. В 12 структурных типах сходство между двумя моделями заключается в наличии одинакового полиэдрического ядра с той разницей, что в нанокластерной модели учитывается связность нанокластеров друг с другом, в то время как модель вложенных полиэдров не опирается на анализ химических взаимодействий. В таблице 12 приведен пример описания структуры Cd₅Ni [199] с точки зрения нанокластерной и полиэдрической моделей. Так, согласно нанокластерной модели, структура Cd₅Ni представлена в виде объединения нанокластеров типа γ -латуни 0@4@22 и 0@6@28 (Ti₂Ni@Cd5) по ОЦК-мотиву (**bcu-x**) (рисунок 61).

Таблица 12

	Нанокласт	ерная модель	Полиэдрическая модель [199]					
Полиэдр	Кластер Ті2Ni (0,0,0)	Кластер ү-латуни (½, ½, ½)	Нанокластер 0@6@28 (0,0,0)	Нанокластер 0@4@22 (¹ ⁄ ₂ , ¹ ⁄ ₂ , ¹ ⁄ ₂)				
IT		Cd1		Cd1				
ОТ	Ni1 + Cd6	Cd2	Ni1 + Cd6	Cd2				
ОН	Ni2 + Cd7	Cd3	Ni2 + Cd7	Cd3				
СО	Cd4	Cd5	Cd4	Cd5				
TT		Cd5						

Нанокластерная и полиэдральная модели строения структуры Cd5Ni

Рисунок 61. Способ связывания 26-атомных 0@4@22 и 34-атомных 0@6@28 нанокластеров по мотиву **bcu-х** в структуре Cd₅Ni.

3. В 13 структурных типах авторами были выделены структурные блоки, которые значительно отличаются от предложенных нами нанокластерных моделей. Так, в работе [201] структура Na₆Tl была представлена в виде связывания четырех икосаэдров через общие грани и ребра и усеченного тетраэдра, в то время как нанокластерная модель описывает структуру Na₆Tl в виде связывания нанокластеров γ -латуни 0@4@22, α -Mn (-CC) и 0@6@28 (Ti₂Ni@Na4) по ОЦК-мотиву (**bcu-x**) (рисунок 62).

Рисунок 62. Способ связывания нанокластеров Ti₂Ni@Na4, γ-латуни и α-Mn (-CC) в структуре Na₆Tl.

4. Авторами структурных работ не было предложено описание семи структурных типов в терминах нанокластеров.

3.2.4.6. Химический состав нанокластеров ү-латуни

Топология первичных нанокластеров тесно связана с их химическим составом. Установлены следующие особенности химического состава 702 кристаллографически независимых нанокластеров γ-латуни, которые реализуются в 576 структурах интерметаллидов: – большинство нанокластеров состоят из двух (58.8%) или трех (39.7%) элементов, также найдено шесть гомоатомных нанокластеров (1.5%) γ-латуни: нанокластеры Li₂₆ в Li₁₃Na₂₉Ba₁₉ [198], Al₂₆ в RuAl₁₂ [211], Mn₂₆ в Mn₃In [176], Cu₂₆ в Cu_{40.5}Sn₁₁ [77], Zn₂₆ в (Fe,Ni)Zn_{6.5} [210] и Cd₂₆ в Cd₅Ni [199].

– нанокластеры γ-латуни могут включать в себя любой лантаноид, Th, а также почти любой s-, p-, d- атом металла кроме Cs, W, Tc и Re.

– нанокластеры A₄B₂₂ с гомоатомными оболочками являются наиболее многочисленными, большинство из них найдены в структурном типе Gd₄RhIn [168] (таблица 13).

Таблица 13

Α	В	Структуры
Mg	Ca, Ce, Dy, Gd, La, Nd, Pr, Sm, Tb,	$Ca_4Ag_{0.95}Mg$, Ln_4MMg ($Ln = Ce$, Dy , Gd , La ,
	Yb	Nd, Pr, Sm, Tb, Yb, $M = Co, Ir, Ru, Rh, Pd$)
Ca	Hg	Ca ₄ Hg ₉
Al	Cu	Cu ₉ Al ₄ , Ni _{0.036} Cu _{0.69} Al _{0.274}
Ga	Cu	Cu ₉ Ga ₄
In	Dy, Er, Gd, Ho, Tm, Y, Tb, Nd, Pr,	$Ln_4MIn (Ln = Dy, Er, Gd, Ho, Tm, Y, Tb, Nd,$
m	Ag, Au, Cu	$Pr, M = Ru, Rh, Ir), Ag_9In_4, Au_9In_4, Cu_9In_4$
Fe	Hf, Zr, Ti	Hf ₂ Fe, Zr ₂ Fe, Ti ₂ Fe
Со	Ti, Hf, Zr	Ti ₂ Co, Hf ₂ Co, Zr ₂ Co
Ni	Ti, Zr, Sc	Ti ₂ Ni, Zr ₄ Ni ₂ Al, Sc ₂ Ni
Cu	Ti, Zr	Ti ₂ Cu, Zr ₂ Cu
Cd	Ca Dy Gd Ho La Th V	Ln ₄ MCd (Ln = Ce, Dy, Gd, La, Nd, Pr, Sm, Tb,
Cu	Ce, Dy, Gu, 110, La, 10, 1	M = Co, Rh, Ir, Ni, Pd, Pt, Ru)
Ru	Al	RuAl ₁₂
Pd	Mg, Hf, Sc	Mg ₂ Pd, Hf ₂ Pd, Sc ₂ Pd
Ir	Hf, Sc, Zr	$Hf_2Ir, Sc_{11}Ru_4, Zr_2Ir$
Mn	Hf	Hf ₂ Mn
Os	Hf	Hf ₂ Os
Pt	Hf, Zr	Hf ₂ Pt, Zr ₂ Pt
Rh	Hf, Zr	Hf ₂ Rh, Zr ₂ Rh

Химический состав оболочек нанокластеров у-латуни А4В22

- выявлены две особенности нанокластеров состава A₄B₂₂:

1. Размер атомов В больше, чем атомов А;

2. Внутренний тетраэдр, построенный из атомов триады элементов Fe, окружен атомами элементов подгруппы Ti.

Если рассматривать кластер γ-латуни в виде комбинации вложенных полиэдров IT + OT +OH + CO, где IT– внутренний тетраэдр, OT – внешний тетраэдр, OH – октаэдр, а CO – кубооктаэдр, то можно вывести закономерности из анализа их химического состава. (таблица П. 16).

Так, на рисунке 63 выделены те элементы, которые могут образовывать любой вложенный полиэдр. Судя по всему, электронная структура элемента влияет на распределение гораздо сильнее, чем размер атома. В частности, независимо от размера атома, все элементы группы XI и XII, а также только трехвалентные лантаноиды могут образовывать вложенный многогранник любого типа. Таким образом, все атомы триады Fe, а также Ru, Rh, Pd, Os и Ir могут образовывать IT, OT, OH, но не CO, атомы IV группы могут образовывать OT, OH и CO, но не IT, Mo, Cs, W, Tc, и Re не участвуют в образовании вложенных многогранников. В то же время, нами не было найдено простое соотношение (подобно правилу Юм-Розери) между электронным строением атомов и их роли в формировании вложенных полиэдров.

Η																	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg												Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds								
											_						
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Рисунок 63. Элементы, выделенные желтым цветом, встречаются в любом типе вложенного полиэдра нанокластеров ү-латуни. Граница Цинтля выделена красными линиями.

3.2.5. Устойчивость нанокластеров

Важным преимуществом нанокластерного метода является то, что информация о топологии нанокластера может быть сохранена в виде компьютерного файла, который затем может быть использован для поиска нанокластерных фрагментов в других структурах. Устойчивость выделенных первичных нанокластеров может быть обоснована частотой их реализации в интерметаллидах (таблица П. 17). Отметим, что приведенные в таблице П. 17 нанокластеры чаще всего встречаются в высокосимметричных структурах интерметаллидов. На рисунке 64 приведены примеры реализации центрированного додекаэдра в интерметаллидах; в данном случае атомные и нанокластерные конфигурации совпадают.

a)

в) г)
Рисунок 64. Нанокластерные конфигурации 1@20 в интерметаллидах
Rb₁₆Cd_{24.94}Sb₃₆ [212] (a), Cs_{13.8}Rb_{16.2}Na_{2.8}Sn_{162.4} [213] (б), K_{21.30}Na_{56.70}Sn₁₃₈ [214] (в) и Cs₈Zn₄Sn₄₂ [215] (г).

3.2.6. База знаний топологических типов нанокластеров

Полученные данные и корреляции внесены в базу знаний экспертной системы комплекса ToposPro. База знаний состоит из трех уровней. Первый уровень содержит экспериментальные кристаллографические данные по интерметаллидам из Банка структурных данных по неорганическим соединениям и базы данных Пирсона. Второй уровень включает информацию о химическом составе нанокластеров, а также их геометрических и топологических параметрах, которые включены в ТТN-коллекцию топологических типов нанокластеров. Третий уровень содержит правила и закономерности, найденные в базе знаний на втором уровне.

Таким образом, задача экспертной системы может быть сведена к обнаружению закономерностей между следующими дескрипторами:

1. Тип нанокластера, т.е. геометрия нанокластера с определенным числом вершин, ребер и граней;

2. Тип центрального атома нанокластера;

3. Химический состав 1-й, 2-й, 3-й и т.д. координационных сфер центрального атома нанокластера;

4. Симметрия нанокластера;

5. Локальная топология связывания нанокластеров;

6. Глобальная топология связывания нанокластеров (базовая сетка).

Опираясь на результаты анализа некоторых классов интерметаллидов, описанные выше, нами были сделаны определенные выводы о природе и составе образующихся нанокластеров в системе металлических фаз.

Проиллюстрируем возможности использования экспертной системы для прогнозирования структурных особенностей интерметаллидов. Изначально пользователь должен указать тип нанокластера (например, икосаэдр), который может быть выбран из TTN-коллекции. Для увеличения надежности прогноза необходимо также указать предполагаемую симметрию кристалла. Так, топология базовой сетки **hex** икосаэдров в гексагональных кристаллических системах реализуется в 771 структуре (90.4%), а в оставшихся 9.5% (81 структура) и 0.1% (1 структура) реализуются базовые сетки с топологиями **tca** и **fcu**, соответственно (таблица П. 5). Далее можно указать, например, тип супракластера; так, с учетом предыдущих критериев, икосаэдры связанные друг с другом через общие грани и ребра образуют базовую сетку **hex** (766 структур) в 100% случаев (таблица П. 5) (рисунок 65а).

В некоторых случаях информация о химическом составе нанокластера может иметь решающее значение в прогнозировании базовой сетки. В частности, нанокластеры состава A@M12 в 94.3% случаев упакованы по мотиву **bcu-x** (таблица П. 7). Икосаэдры Ir@M12 образуют **bcu-x** (83.3%) и **ncb** (16.7%) базовые сетки (таблица П. 7) (рисунок 65б).

Указанные примеры иллюстрируют основную идею базы знаний экспертной системы. База знаний аккумулирует все возможные соотношения между различными дескрипторами. Некоторые эти корреляции могут быть хорошо известны человеку-эксперту, однако никакой эксперт не может сохранить у себя в памяти всю информацию, в то время как для машины это не составляет никакого труда. Таким образом, компьютерные средства сборки и обработки информации могут существенно помочь исследователю в прогнозировании новых интерметаллических структур.

Рисунок 65. Схема прогнозирования структурных особенностей интерметаллидов.

Часть 3.3. Особенности строения модельных нанокластеров Cu_N и их реализуемость в интерметаллидах

Топологический анализ нанокластеров Cu₄-Cu₁₀₀ показал, что модельные нанокластеры могут иметь следующие типы внутренних полиэдрических ядер (таблица П. 18): 0@3 (треугольник), 0@4 (тетраэдр), 0@5 (треугольная бипирамида), 0@6 (октаэдр), 0@7 (пятиугольная бипирамида), 1@12 (икосаэдр, кубооктаэдр и 12-вершинник). В ряде случаев наблюдается последовательный топологический рост⁴ нанокластеров с определенным типом внутреннего ядра, что приводит к формированию двух- и трехоболочечных нанокластеров (рисунок 66).

Рисунок 66. Последовательный рост нанокластеров над внутренним ядром в виде пятиугольной бипирамиды с образованием двух- и трехоболочечного нанокластеров.

Рассчитанные нами геометрические конфигурации нанокластеров Cu_4 - Cu_{100} частично согласуются с результатами, которые представлены в Cambridge Cluster Database [135]. Модельные нанокластеры, взятые из Cambridge Cluster Database, могут быть представлены как результат последовательного топологического роста нанокластеров с внутренним икосаэдрическим ядром. В то же время наши расчеты показывают, что последовательный топологический рост нанокластеров меди с внутренним икосаэдром реализуется только при N = 13-26 и 55-68. Интересно, что

⁴ Под последовательным топологическим ростом мы подразумеваем увеличение размеров нанокластера на один атом с сохранением топологии предыдущего атомного фрагмента.

нанокластеры Cu₁₃, Cu₁₉, Cu₂₃ и Cu₂₆ имеют соответственно структуры икосаэдра, двух вложенных икосаэдров, трех вложенных икосаэдров и четырех вложенных икосаэдров (кластер γ-латуни) (рисунок 67).

Рисунок 67. Нанокластеры меди в виде икосаэдра (а), двух вложенных икосаэдров (б), трех вложенных икосаэдров (в) и четырех вложенных икосаэдров (г).

Напомним, что среди рассмотренных выше 576 интерметаллидов (§ 3.2.4.6), содержащих первичные нанокластеры в виде 26-атомных кластеров γ -латуни, найден монометаллический нанокластер γ -латуни Cu₂₆ в структуре Cu_{40.5}Sn₁₁. Для сравнения нами также было проведено моделирование нанокластера Ag₂₆, однако глобальный минимум энергии гомоатомного нанокластера Ag₂₆ соответствует двухслойной гексагональной упаковке атомов (**hcp**), а не структуре кластера γ -ла-туни (рисунок 68). Кроме того, в реальных структурах интерметаллидов нами не найден нанокластер Ag₂₆, соответствующий конфигурации γ -латуни (§ 3.2.4.6). Таким образом, полученные оптимальные конфигурации нанокластеров меди и серебра подтверждают правильность использования нами нанокластерного моделирования.

Рисунок 68. Гексагональная упаковка атомов в кластере Ag₂₆.

Встречаемость в структурах интерметаллидов атомных конфигураций (таблица П. 19), топологически эквивалентных модельным нанокластерам Cu_N, приведена на рисунке 69. В качестве иллюстрации на рисунке 70 представлены атомные конфигурации Cu₁₃, Cu₁₉, Cu₂₃ и Cu₂₆ в структурах некоторых интерметаллидов. В рамках механизма последовательного топологического роста нанокластеров с определенным типом внутреннего ядра наблюдается снижение встречаемости нанокластеров в структурах интерметаллидов с увеличением их размеров. Для иллюстрации указанного вида зависимости на рисунке 69 мы выделили серым цветом точки, соответствующие встречаемости нанокластерных конфигураций с внутренним икосаэдром. Кроме того, установлено, что выбросы на распределении соответствуют нанокластерам с N = 38 и 79 и ГЦК структурой. Модельные нанокластеры, содержащие 27-34 и 86-100 атомов, в структурах интерметаллидов не реализуются.

Рисунок 69. Встречаемость в структурах интерметаллидов атомных конфигураций, топологически эквивалентных модельным нанокластерам Cu_N, в зависимости от их размера; серым цветом выделены точки, соответствующие нанокластерам с внутренним икосаэдрическим ядром.

a)

Рисунок 70. Атомные конфигурации в структурах интерметаллидов (выделены красным цветом): а – Си₁₃ в Al₂₀Cr₂Er [216]; б – Си₁₉ в Al₁₂Cu₆Mg₁₁ [217]; в – Си₂₃ в $(Eu_{2.35}Ca_{18.65})Ni_2Zn_{36}$ [218]; г – Cu₂₆ в NaCd₂ [6].

108
Часть 3.4. Особенности строения синтезированных интерметаллидов

3.4.1. Особенности структуры Au₁₀Mo₄Zn₈₉

Структуру Au₁₀Mo₄Zn₈₉ (таблица П. 20 и П. 21) можно представить состоящей из четырех типов нанокластеров (рисунок 71), связанных по мотиву **bcu-x** (рисунок 72) – 0@Zn6@Zn24Mo4 (тип Ti₂Ni), 0@Zn8@Zn28Au6 (тип γ -латуни), 0@Zn4@Zn18Au4 (тип γ -латуни) и Zn@Zn16 (полиэдр Фриауфа).

Рисунок 71. Первичные нанокластеры, выделенные в структуре $Au_{10}Mo_4Zn_{89}$: а – первичный нанокластер 0@6@28, двенадцать атомов Zn35, которые расположены над внутренним ядром Ti₂Ni, формируют усеченный тетраэдр; б – первичный нанокластер 0@4@22 в виде кластера γ -латуни; в - первичный нанокластер 0@8@34 с внутренним кластером γ -латуни, внутреннее ядро 0@8 представлено в виде двух вложенных тетраэдров, атомы, формирующие усеченный тетраэдр и тетраэдр над кластером γ -латуни, выделены синим и серым цветами, соответственно; г – поли-эдр Фриауфа 1@16.

Рисунок 72. Способ связывания первичных нанокластеров 0@Zn6@Zn24Mo40@Zn8@Zn28Au6, 0@Zn4@Zn18Au4 и Zn@Zn16 по мотиву bcu-х в структуре Au₁₀Mo₄Zn₈₉.

Выделенные в Au₁₀Mo₄Zn₈₉ нанокластеры 0@4@22, 0@6@28 и 0@8@34 являются типичными строительными блоками для интерметаллидов типа γ -латуни и подробно были исследованы нами ранее в § 3.2.4. Следует отметить, что структура Au₁₀Mo₄Zn₈₉ изотипна Au₁₀Cr₄Zn₈₉ [219]. Кроме того, β -Al_{67.4}Cu_{14.3}Cr_{18.3} [220] и (Fe,Ni)Zn_{6.5} [210] имеют схожее структурное описание с Au₁₀Mo₄Zn₈₉ (таблица 15). Как видно из таблицы 15 типы нанокластеров и их базовые сетки для Au₁₀Mo₄Zn₈₉ и Au₁₀Cr₄Zn₈₉ являются идентичными – способ связывания нанокластеров 0@4@22, 0@6@28, 0@8@34 и 1@16 по мотиву **bcu-х**. Структура β -Al_{67.4}Cu_{14.3}Cr_{18.3} может быть представлена в виде комбинации нанокластеров в виде 0@4@22 + 0@4@22 + 0@6@28 + 1@16, которые связаны друг с другом по мотиву **bcu-х**. В свою очередь, (Fe,Ni)Zn_{6.5} в большей степени отличается от Au₁₀Mo₄Zn₈₉: 0@4@22 + 0@6@28 + 1@16 + 1@11.

Нанокластерные модели Au₁₀M₄Zn₈₉ (M = Cr и Mo), β-Al_{67.4}Cu_{14.3}Cr_{18.3} и (Fe,Ni)Zn_{6.5}

CERTING		Позиции	Нанокластерная	Базовая	
Структура	пр. группа	Уайкоффа	модель	сетка	
			0@Zn4@Au4Zn18 +		
Arr. Ma. 7.		15 20 61	0@Zn6@Mo4Zn24 +		
Au ₁₀ 1 v 104Zn ₈₉		n g fe b	0@Zn8@Au6Zn28 +	DCU-X	
			Zn@Zn16		
			0@Zn4@Au4Zn18 +		
Au ₁₀ Cr ₄ Zn ₈₉	F43m	$h^5g^2fe^6b$	0@Zn6@Cr4Zn24 +	bcu-x	
			0@Zn8@Au6Zn28 +		
			Zn@Zn16		
			0@Al4@Cr4Al18 +		
θ <u>Δ1 - Curre</u>		1.5 -26-6 d	0@Al6@Cr4Al24 +	hou y	
p-A167.4Cu14.3Cr18.3		h°g-fe°d	0@Al4@Cr10Al12 +	bcu-x	
			Cu@Cu12Al4		
			0@Zn4@Zn22 +		
(Fe,Ni)Zn _{6.5}		$h^5 g f^2 e^6 da$	0@Zn6@Zn24Fe4 +	bcu-x	
			Zn@Zn16 + Fe@Fe4Zn7		

Рассчитанная электронная плотность (рисунок 26, § 2.3.3) характеризуется резким пиком в диапазоне -7 – -4 eV и выраженной псевдощелью -0.5 – 0.5 eV; уровень Ферми попадает в эту псевдощель. Кривые –СОНР показывают, что связывающие молекулярные орбитали (МО) находятся по энергии ниже уровня псевдощели, несвязывающие МО – выше уровня псевдощели и разрыхляющие МО – внутри псевдощели. Следует отметить, что энергетические различия между 5d- и 4d-орбиталями Au и Mo, соответственно, весьма значительны. Так, 5d-орбитали Au соответствуют пику в диапазоне -7 – -4 eV на кривой –СОНР для Au-Zn. В свою очередь 4d-орбитали Mo располагаются выше по энергии, чем 5d-орбитали Au (-4 – 3 eV). Более широкий энергетический диапазон 4d-орбиталей Mo разделен на два пика – ниже уровня псевдощели (-4 – 0 eV), и выше уровня псевдощели (0 – 3 eV),

которые соответствуют связывающим и разрыхляющим MO, соответственно, на кривой –СОНР для Mo-Zn. Рассчитанная нами электронная концентрация Au₁₀Mo₄Zn₈₉ равна 1.67 ē/атом, что соответствует соединениям γ-латуни. Все указанные выше результаты расчетов характерны для соединений γ-латуни. Таким образом, анализ электронной плотности подтверждает результаты проведенного нами выше для Au₁₀Mo₄Zn₈₉ нанокластерного анализа.

3.4.2. Особенности структуры AuZn_{2.1}

Описание структуры синтезированного нами соединения AuZn_{2.1} (таблица П. 20 и П. 21) приведено выше (§ 2.2.1). Используя TTN-коллекцию нами было найдено два различных топологических типа нанокластеров со стехиометрическим составом 1@10@38 и три топологических типа нанокластеров со стехиометрическим составом 1@12@43 (таблица 16). Для наглядности в качестве описания топологического типа нанокластера в таблице 16 мы применили символы Nv, Ne и Nf, где N показывает количество атомов, располагающихся над вершинами (v), ребрами (e) и гранями (f) предыдущей оболочки или внутреннего ядра.

Найденный нами нанокластер 1@10@38 (1v@10v@22v,9e,7f) в AuZn₂ также может быть представлен в качестве подграфа восьми различных нанокластеров: 1@8@38@90 найден в Li₁₇Sn₄ [225], 1@14@40 и 1@14@40@104 в Al_{282.23}Ta_{161.77} [226], 1@14@44 в Sm₁₁Cd₄₅ [227], Y_{0.51}Ce_{0.49}Mg_{4.7} [228], Li₈Rh₇Sn₈ [229], GdMg_{5.05} [230], 1@14@44@104 в GdMg_{5.05} [230] и 1@14@50@96 в Li_{16.995}Zn_{0.0052}Ge₄ [231] (рисунок 73). Кроме того, нанокластер 1@10@38 в виде атомной конфигурации найден в 2751 интерметаллиде.

Тип нан	юкластера	Структура	Базовая сетка
1@10@38	1v@10v@22v,9e,7f	AuZn _{2.1} [наст. работа]	цепь
1@10@38_model1	1v@10v@19v,8e,11f	Mo ₆ Ga ₃₁ [221]	feb
1@10@38_model2	1v@10v@14v,18e,6f	Al _{148.2} Co _{50.1} [222]	hxl
1@12@43	1v@12v@20v,17e,6f	AuZn _{2.1} [наст. работа]	цепь
1@12@43_model1	1v@12v@18v,13e,12f	Mn _{2.99} Al _{19.677} [223]	fcu
1@12@43_model2	1v@12v@12v,24e,7f	Cu _{7.55} Al _{4.80} [224]	рси
1@12@43_model3	1v@12v@21v,9e,13f	Ir ₉ Al ₂₈	молекулярная компл. группировка

Топологические типы нанокластеров

Рисунок 73. Нанокластер 1@10@38 (выделен желтым) в виде подграфа нанокластера 1@14@40 (а); нанокластер 1@10@38 (выделен желтым) в виде подграфа нанокластера 1@8@38@90 (б).

3.4.3. Особенности структуры Cu₂MnIn

Из особенностей структуры Cu_2InMn (таблица П. 20 и П. 21) следует отметить, что атомы Cu образуют тетраэдры Cu_4 , соединенные друг с другом через вершины в трехмерный каркас, в пустотах которого расположены атомы In/Mn. Каждый атом Cu окружен шестью соседними атомами Cu на расстоянии 2.525 Å и шестью атомами In/Mn на расстоянии 2.961 Å; в ближайшее окружение атома In/Mn входят 12 атомов Cu и четыре атома In/Mn на расстоянии 3.092 Å. Исходная атомная сетка структуры Cu₂InMn соответствует структурному типу фазы Лавеса MgCu₂. Нанокластерная модель описания указанной структуры включает нанокластеры в виде двух вложенных тетраэдров, связанные между собой по алмазному (**dia-x**) мотиву (рисунок 74).

Рисунок 74. Строение структуры Cu₂InMn: первичный нанокластер в виде двух вложенных тетраэдров (слева), способ связывания 0@8 нанокластеров по алмазному мотиву **dia-x**.

115 **ВЫВОДЫ**

1. Проведена топологическая систематика 27972 интерметаллидов. Показано, что наиболее часто встречающимися типами топологии интерметаллидов являются высококоординированные (КЧ = 16, 14 и 12) и наиболее симметричные структуры с пространственными группами *P*6₃/*mmc*, *Fm*3*m* или *I*4/*mmm*.

2. Создана база данных по топологическим типам полиоболочечных нанокластеров (TTN-коллекция), содержащая геометрические и топологические данные о 2017 первичных нанокластерах для всех известных структур интерметаллидов.

3. Предложен новый метод топологической классификации интерметаллидов, основанный на построении модели локального связывания первичных нанокластеров. Показано, что в большинстве случаев топологический тип локального связывания икосаэдров предопределяет топологию всей структуры.

4. Показано, что тип первичного нанокластера с высокой вероятностью определяет алгоритм образования структуры интерметаллида в целом. В частности установлено, что первичные нанокластеры в виде икосаэдров и кластеров γ-латуни наиболее часто упакованы по мотивам гексагональной (**hex**) решетки и примитивной кубической (**pcu**) решетки, соответственно.

5. Показано, что икосаэдрические и додекаэдрические нанокластеры могут выполнять роль темплатов, на которых формируются более сложные нанокластеры. При различном составе и строении полиэдрического ядра (икосаэдр или додекаэдр) реализуется высокосимметричная оболочка в виде дельтаэдра *D*32. Кроме того, над внутренним додекаэдрическим ядром могут реализовываться оболочки *D*42 и *D*50. Кластеры Бергмана с дельтаэдром *D*32 над внутренним икосаэдрическим ядром также являются темплатами, на поверхности которых могут формироваться различные типы высокосимметричных оболочек *D*80, *D*86, *D*92 и *D*110.

6. Предложены варианты трансформации различных типов нанокластеров типа *γ*-латуни вследствие миграции атомов в их оболочках.

7. Установлены следующие особенности в химическом составе нанокластеров: *а*) икосаэдрические нанокластеры могут включать практически любой элемент; *б*) икосаэдрические нанокластеры состава $A@M_{12}$ и $A@A_6+M_6$ чаще всего центрированы меньшими по размерам атомами A; *в*) нанокластеры γ -латуни могут включать в себя любой лантаноид, Th, а также почти любой *s*-, *p*-, *d*- атом металла кроме Cs, W, Tc и Re; *г*) независимо от размера атома, все элементы группы XI и XII, а также только трехвалентные лантаноиды могут образовывать вложенный многогранник любого типа в нанокластере γ -латуни.

8. Выявлены закономерности встречаемости атомных конфигураций, топологически эквивалентных модельным нанокластерам Cu_N, в структурах интерметаллидов в зависимости от их размеров и структуры. Реализуемость модельных нанокластеров в интерметаллидах, с одной стороны, подтверждает корректность моделирования, а с другой – корректность нанокластерных моделей. Так, глобальному минимуму монометаллического 26-атомного нанокластера меди соответствует конфигурация кластера γ-латуни, которая была найдена нами в структуре Cu_{40.5}Sn₁₁ в рамках нанокластерного моделирования. В свою очередь, неустойчивость кластера γ-латуни для серебра подтверждена методами молекулярно-динамического и нанокластерного моделирования.

9. Синтезированы и структурно охарактеризованы три новых интерметаллида $Au_{10}Mo_4Zn_{89}$, $AuZn_{2.1}$ и Cu_2InMn . Расчет электронной структуры $Au_{10}Mo_4Zn_{89}$ методом теории функционала плотности, а также нанокластерный анализ, установили принадлежность указанного интерметаллида к семейству γ -латуней.

117 **ЗАКЛЮЧЕНИЕ**

В результате выполненного исследования нами были выявлены все возможные строительные блоки (нанокластеры) интерметаллических структур, позволяющие провести систематику кристаллических структур интерметаллидов по критерию сходства образующих их нанокластерных структурных единиц. Выделенные топологически индивидуальные нанокластеры были включены в базу данных по топологическим типам нанокластеров системы комплекса ToposPro (TTN-коллекция). На основании данной систематики в настоящей работе представлены некоторые выводы о закономерностях формирования интерметаллических архитектур, содержащих связные атомные фрагменты в виде икосаэдров, додекаэдров, кластеров Бергмана и γ-латуни.

Устойчивость первичных нанокластеров была доказана их частотой реализации в интерметаллидах. Более того, экспериментальные расчеты зонной структуры $Au_{10}Mo_4Zn_{89}$ методом теории функционала плотности, а также молекулярно-динамическое моделирование нанокластеров Cu_N (N = 4-100 атомов) и Ag_{26} подтверждают правильность использования нами нанокластерного моделирования кристаллических структур интерметаллидов.

118 СПИСОК ЛИТЕРАТУРЫ

1. Blatov, V. A. Nanocluster analysis of intermetallic structures with the program package TOPOS / V. A. Blatov // Struct. Chem. 2012. – Vol. 23. – P. 955-963.

2. Belsky, A. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [Электронный ресурс] / A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch // Acta Cryst. – 2002. – Vol. B58. – P. 364-369. – Режим доступа: http://www.fiz-karlsruhe.de/icsd_home.html.

3. Villars, P. Pearson's Crystal Data Crystal Structure Database for Inorganic Compounds [Электронный ресурс] / P. Villars, K. Cenzual. – ASM International: Materials Park, 2009. – 1 электрон. Опт. Диск (CD-ROM).

4. Lima-de-Faria, J. Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types / J. Lima-de-Faria, E. Hellner, F. Liebau [et al.] // Acta Cryst. 1990. – Vol. A46. – P. 1-11.

5. Урусов, В. С. Структурный тип и родственные ему понятия кристаллохимии / В. С. Урусов // Кристаллография. 2009. – Т. 54, № 5. – С. 795-804.

6. Samson, S. Crystal structure of NaCd₂ / S. Samson // Nature. 1962. – Vol. 195. – P. 259-262.

7. Friauf, J. B. The crystal structures of two intermetallic compounds / J. B. Friauf // J. Am. Chem. Soc. 1927. – Vol. 49. – P. 3107-3114.

Порай-Кошиц, М. А. Основы структурного анализа химических соединений / М.
 А. Порай-Кошиц. – М.: Высшая школа, 1989. – 192 с.

9. Современная кристаллография: в 4 т. / Б. К. Вайнштейн, В. М. Фридкин, В. Л. Инденбом. – М.: Наука, 1979. – 2 т.

Сережкин, В. Н. Метод пересекающихся сфер для определения координационного числа атомов в структуре кристаллов / В. Н. Сережкин, Ю. Н. Михайлов, Ю. А. Буслаев // Журн. неорган. химии. 1997. – Т. 42, № 12. – С. 2036–2077.

11. Slater, J. C. Atomic Radii in Crystals / J. C. Slater // J. Chem. Phys. 1964. – Vol.41, N 10. – P.3199-3204.

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / R. D. Shannon // Acta crystallogr. 1976. – Vol. A32, N 5. – P.751-767.

13. Pauling, L. The nature of the chemical bond and the structure of molecules and crystals: An Introduction to Modern Structural Chemistry / L. Pauling. – 3rd ed. – L.: Cornell Univ. press, 1960. – 644 p.

14. Бейдер, Р. Атомы в молекулах. Квантовая теория / Р. Бейдер. – М.: Мир, 2001. – 532 с.

15. Blatov, V. A. Crystal Analysis by means of Voronoi-Dirichlet Polyhedra / V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin // Acta Crystallogr. 1995. – Vol. A51. – P. 909-916.

16. Blatov, V. A. Stereoatomic model of the structure of inorganic and coordination compounds / V. A. Blatov, V. N. Serezhkin // Russ. J. Inorg. Chem. Suppl. 2. 2000. – Vol. 45. – P. S105-S222.

17. Блатов, В. А. Координационные числа атомов / В. А. Блатов, В. Н. Сережкин // Химия. 1999. – С. 91-97.

18. Peresypkina. E. V. Topology of molecular packings in organic crystals / E. V. Peresypkina, V. A. Blatov // Acta Cryst. 2000. – Vol. B56, N 6. – P. 1035-1045.

19. Blatov, V. A. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro [Электронный ресурс] / V. A. Blatov, A. P. Shevchenko, D. M. Proserpio // Crystal Growth and Design. 2014. – Vol. 14. – Р. 3576-3586. – Режим доступа: http://topospro.com/.

20. Харари, Ф. Теория графов / Ф. Харари. – М.: Мир, 1973. – 301 с.

21. Chung, S. J. Nomenclature and Generation of Three-Periodic Nets: the Vector Method

/ S. J. Chung, Th. Hahn, W. E. Klee // Acta Cryst. 1984. –Vol. A40. – P. 42–50.

22. Klee, W. E. The topology of crystal structures: Invariants /W. E. Klee // Z. Kristallogr. 1987. – Vol. 179. – P. 67–76.

23. Блатов, В. А. Методы топологического анализа атомных сеток / В. А. Блатов // Журн. структурной химии. 2009. – Vol. 50. – Р. 166-173.

24. Blatov, V. A. Search for Isotypism in Crystal Structures by Means of the Graph Theory / V. A. Blatov // Acta Cryst. 2000. – Vol. A56. – P. 178–188.

25. Fischer, W. Existenzbedingungen homogener Kugelpackungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden / W. Fischer // Z. Kristallogr. 1973. – Vol. 138. – P. 129–146.

26. Brunner, G. O. Zum Problem der Koordinationszahl / G. O. Brunner, F. Laves // Wiss.
Z. Techn. Univ. Dresden. 1971. – Vol. 20. – P. 387–390.

27. O'Keeffe, M. Crystal Structures. I. Patterns and Symmetry / M. O'Keeffe, B. G. Hyde.
– Washington, DC: Mineralogical Society of America, 1996. – 453 p.

28. Blatov, V. A. Vertex-, Face-, Point-, Schlafli-, and Delaney-symbols in Nets, Polyhedra and Tilings: Recommended Terminology / V. A. Blatov, M. O'Keeffe, D. M. Proserpio // CrystEngComm. 2010. – Vol. 12. – P. 44-48.

29. Delgado-Friedrichs, O. What do we know about three-periodic nets? / O. Delgado-Friedrichs, M. O'Keeffe, D. M. Proserpio, M. M. J. Treacy, O. M. Yaghi // J. Solid State Chem. 2005. – Vol. 178. – P. 2533–2554.

30. O'Keeffe, M. The Reticular Chemistry Structure Resource (RCSR) Database of, and symbols for, Crystal Nets [Электронный ресурс] / M. O'Keeffe, M. A. Peskov, S. J. Ramsden, O. M. Yaghi // Acc. Chem. Res. 2008. – Vol. 41, N 12. – P. 1782-1789. – Режим доступа: http://rcsr.anu.edu.au/.

31. Fischer, W. Existenzbedingungen homogener Kugelpackungen in Raumgruppen tetragonaler Symmetrie / W. Fischer // Z. Kristallogr. 1971. – Vol. 133. – P. 18–42.

32. Hyde, S. T. Towards enumeration of crystalline frameworks: the 2D hyperbolic approach [Электронный ресурс] / S. T. Hyde, O. Delgado-Friedrichs, S. J. Ramsden, V. Robins // Solid State Sci. 2006. – Vol. 8. – Р. 740–752. – Режим доступа: http://epinet.anu.edu.au/.

33. Delgado-Friedrichs, O. Identification of and symmetry computation for crystal nets / O. Delgado-Friedrichs, M. O'Keeffe // Acta Crystallogr. 2003. – Vol. A59. – P. 351–360.
34. Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS / V. A. Blatov // IUCr Compcomm. Newsletter. 2006. – Vol. 7. – P. 4–38.
35. Белов, Н. В. Структура ионных кристаллов и металлических фаз / Н. В. Белов.

– M.: AH CCCP, 1941. – 237 c.

36. Steurer, W. Crystallography of Quasicrystals: Concepts, Methods and Structures / W. Steurer, S. Deloudi. – Springer Verlag: Berlin, 2009. – 384 p.

37. Frank F. C. Complex Alloy Structures Regarded as Sphere Packings. I. Denitions and Basic Principles / F. C. Frank, J. S. Kasper // Acta Cryst. 1958. – Vol. 11. – P. 184.

38. Frank F. C. Complex Alloy Structures Regarded as Sphere Packings. II. Analysis and Classification of Representative Structures / F. C. Frank, J. S. Kasper // Acta Cryst. 1959. – Vol. 12. – P. 483-499.

39. Урусов, В.С. Теоретическая кристаллохимия / В. С. Урусов. – М.: МГУ, 1987. – 275 с.

40. Damasceno, P. F. Predictive Self-Assembly of Polyhedra into Complex Structures //
P. F. Damasceno, M. Engel, S. C. Glotzer // Science. 2012. – Vol. 337. – P. 453-457.

41. Damasceno P. F. Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces / P. F. Damasceno, M. Engel, S. C. Glotzer // ACS Nano. 2012. – Vol. 6. – P. 609-614.

42. Yang, Q. B. Application of coincidence site lattices for crystal structure description. Part I: $\Sigma = 3 / Q$. B. Yang, S. Andersson, L. Stenberg // Acta Cryst. 1987. – Vol. B43. – P.14-16.

43. Bergman, G. Structure of NaCd₂: an alternative path to a trial structure / G. Bergman // Acta Cryst. 1996. – Vol. B52. – P. 54-58.

44. Fredrickson, D. C. Interpenetrating polar and nonpolar sublattices in intermetallics: The NaCd₂ structure / D. C. Fredrickson, S. Lee, R. Hoffmann // Angew. Chem. Int. Ed. 2007. – Vol. 46. – P. 1958-1976.

45. Shevchenko, V. Ya. Intermetallic compounds of the NaCd₂ family perceived as assemblies of nanoclusters / V. Ya. Shevchenko, V. A. Blatov, G. D. Ilyshin // Struct. Chem. 2009. – Vol. 20. – P. 975-982.

46. Ilyushin, G. D. Crystal structures of the $ZrZn_{22}$ family: suprapolyhedral nanoclusters, methods of self-assembly and superstructural ordering / G. D. Ilyushin, V. A. Blatov // Acta Cryst. 2009 – Vol. B65. – P. 300–307.

47. Blatov, V.A. Nanocluster model of intermetallic compounds with giant unit cells: β , β '-Mg₂Al₃ polymorphs / V. A. Blatov, G. D. Ilyushin, D. M. Proserpio // Inorg. Chem. 2010. – Vol. 49, N 4. – P. 1811-1818.

48. Blatov, V. A. New method for computer analysis of complex intermetallic compounds and nanocluster model of the Samson phase Cd_3Cu_4 / V. A. Blatov, G. D. Ilyushin // Cryst. Rep. 2010. – Vol. 55. – P. 1100-1105.

49. Ilyushin, G. D. Cluster self-organization of intermetallic systems: Quasi-spherical nanocluster precursors with internal Friauf polyhedra (A-172) and icosahedra (B-137) in the $Li_{19}Na_8Ba_{15}$ (hP842) crystal structure / G. D. Ilyushin, V. A. Blatov // Cryst. Rep. 2010. Vol. 55. No 7. P. 1093-1099.

50. Blatov, V. A. Geometric and Topological Analysis of Icosahedral Structures of Samson Mg₂Zn₁₁ (*cP*39) Phases, K₆Na₁₅Tl₁₈H (*cP*40), and Tm₃In₇Co₉ (*cP*46): Nanocluster Precursors, Self-Assembly Mechanism, and Superstructure Ordering / V. A. Blatov, G. D. Ilyushin // Russ. J. Inorg. Chem. 2011. – Vol. 56. – P. 729-737.

51. Blatov, V. A. New types of multi-shell nanoclusters with a Frank-Kasper polyhedral core in intermetallics / V. A. Blatov, G. D. Ilyushin, D. M. Proserpio // Inorg. Chem. 2011. – Vol. 50. P. 5714-5724.

52. Kirihara, K. Covalent bonds and their crucial effects on pseudogap formation in α -Al(Mn,Re)Si icosahedral quasicrystalline approximant / K. Kirihara, T. Kiura K. Nagata, M. Takata, E. Nishibori, M. Sakata // Phys. Rev. 2003. – Vol. B68. – P. 014205(1)-014205(12).

53. Calvert, L. D. The crystal structure of Ag₈Ca₃ / L. D. Calvert, C. Rand // Acta Cryst. 1964. – Vol. 17. – P. 1175–1176.

54. Li, B. Electronic Stabilization Effects: Three New K-In-T (T = Mg, Au, Zn) Network Compounds / B. Li, J. Corbett // Inorg. Chem. 2006. – Vol. 45. – P. 8958-8964.

55. Zaremba, R. The Rare Earth Metal-Rich Indides RE_4RhIn (RE = Gd–Tm, Lu) / R. Zareba, U. C. Rodewald, R. D. Hoffmann, R. Pöttgen // Monatsh. Chem. 2007. – Vol. 138, N6. – P. 523–528.

56. Shoemaker, D. P. In Introduction to Quasicrystals / D. P. Shoemaker, C. B. Shoemaker, M. V. Jarić. – Academic Press: San Diego, CA, 1988. – Chapter 1.

57. Shevchenko, V. Ya. Icosahedral Nanoclusters-Precursors and Self-Assembly of Crystal Structures of the WAl₁₂ (*I*m-3, *cI*26) Family and Sillenite Bi12SiO20 (*I*23, *cI*66) / V. Ya. Shevchenko, V. A. Blatov, G. D. Ilyushin // Glass Physics and Chemistry. 2014. –

Vol. 40, N 6. – P. 591-599.

58. Shevchenko, V. Ya. Structure of Icosahedral Nanoobjects / V. Ya. Shevchenko, M. I. Samoilovich, A. L. Talis, A. E. Madison // Glass Physics and Chemistry. 2005. – Vol. 31, N 6. – P. 823-828.

59. Steurer, W. Fascinating quasicrystals / W. Steurer, S. Deloudi // Acta Cryst. 2008. Vol. A64. P. 1-11.

60. Векилов, Ю. Х. Квазикристаллы / Ю. Х. Векилов, М. А. Черников // УФН. 2010.
– Т. 180, № 6. – С. 561-586.

61. Дмитриенко, В. Е. Искажения в атомной структуре 2/1-аппроксимантов икосаэдрических квазикристаллов / В. Е. Дмитриенко, В. А. Чижиков // Кристаллография. 2007. – Т. 52, № 6. – С. 1077-1084.

62. Bergman, G. The crystal structure of the metallic phase $Mg_{32}(Al, Zn)_{49} / G$. Bergman,

J. L. T. Waugh, L. Pauling // Acta Cryst. 1957. – Vol. 10. – P. 254-259.

63. Cooper, M. The crystal structure of the ternary alloy α-(AlMnSi) / M. Cooper, K. Robinson // Acta Cryst. 1966. – Vol. 20. – P. 614–617.

64. Sugiyama, K. Physical Properties of Quasicrystals / K. Sugiyama, N. Kaji, K. Hiraga // Acta Cryst. 1998. – Vol. 54. – P. 445-447.

65. Guo, J. Q. Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems / J.

Q. Guo, E. Abe, A. P. Tsai // Phys. Rev. 2000. - Vol. 62. - P. 14605-14608.

66. Thimmaiah, S. On the Structural Chemistry of γ -Brasses: Two Different Interpenetrating Networks in Ternary F-Cell Pd–Zn–Al Phases / S. Thimmaiah, G. J. Miller // Chem. Eur. J. 2010. – Vol. 16. – P. 5461-5471.

67. Wells, A. F. Structural Inorganic Chemistry / A. F. Wells. – 5th ed. – Oxford University Press. London, 1984. – 1312 p.

68. Mizutani, U. Hume-Rothery Rules for Structurally Complex Alloy Phases. / U. Mizutani. – CRC Press, 2011. – 274 p.

69. Löhberg, K. Mischkristallbildung in binären metallischen Legierungen / K. Löhberg // Z. Metallkd. 1949. – Vol. 40. – P. 68-72.

70. Lieser, K. H. Untersuchungen in den ternären Systemen Magnesium-Kupfer-Zink, Magnesium-Nickel-Zink und Magnesium-Kupfer-Nickel / K. H. Lieser, H. Witte // Z. Metallkd. 1952. – Vol. 43. – P. 396-401.

71. Структурная неорганическая химия: в 3 т. / А. Уэллс. – М.: Мир, 1988. – 3 т.

72. Кузьмичева, Г. М. Кристаллохимические закономерности в Периодической системе элементов Д. И. Менделеева. Основные кристаллические структуры соединений / Г. М. Кузьмичева. – М.: МИТХТ, 2002. – 44 с.

73. Кристаллохимия и физика металлов и сплавов: в 2 т. / У. Пирсон. – М.: Мир, 1977. – 2 т.

74. Berger, R. F. Connecting the chemical and physical viewpoints of what determines structure: From 1-D chains to γ -brasses / R. F. Berger, P. L. Walters, S. Lee, R. Hoffmann // Chem. Rev. 2011. – Vol. 111. – P. 4522-4545.

75. Nyman, H. The elongated rhombic dodecahedron in alloy structures / H. Nyman, S. Andersson // Acta Cryst. 1979. – Vol. A35. – P. 305-308.

76. Mizutani, U. Hume–Rothery Rules for Structurally Complex Alloy Phases / U. Mizutani. – CRC Press: Boca Raton, 2011. – 356 p.

77. Booth, M. H. γ-Brasses with F cells / M. H. Booth, J. K. Brandon, R. Y. Brizard, C. Chieh, W. B. Pearson // Acta Cryst. 1977. – Vol. B33. – P. 30–36.

78. Weber, T. Large, larger, largest - a family of cluster-based tantalum copper aluminides
/ T. Weber, J. Dshemuchadse, M. Kobas, M. Conrad, B. Harbrecht, W. Steurer // Acta
Cryst. 2009. – Vol. B65. – P.308-317.

79. Dshemuchadse, J. Structural building principles of complex fcc intermetallics with more than 400 atoms per unit cell / J. Dshemuchadse, D. Y. Jung, W. Steurer // Acta Cryst. 2011. – Vol. B67. – P. 269-272.

80. Chabot, B. Nested polyhedra units: a geometrical concept for describing complicated cubic structures / B. Chabot, K. Cenzual, E. Parthe // Acta Cryst. 1981. – Vol. A37. – P. 6-11.

81. Dong, C. The δ-Al₄Cu₉ phase as an approximant of quasicrystals / C. Dong // Philos.
Mag. 1996. – Vol. A73. – P.1519-1528.

82. Berger, R. F. The mystery of perpendicular 5-fold axes and the fourth dimension in intermetallic structures / R. F. Berger, S. Lee, J. Johnson, B. Nebgen, F. Sha, J. Xu // Chem. Eur. J. 2008. – Vol. 14. – P. 3908-3930.

83. Berger, R. F. Laves phases, γ -brass, and 2x2x2 superstructures: A new class of quasic-rystal approximants and the suggestion of a new quasicrystal / R. F. Berger, S. Lee, J. Johnson, B. Nebgen, A. C. Y. So // Chem. Eur. J. 2008. – Vol. 14. – P. 6627-6639.

84. Ranganathan, S. An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics / S. Ranganathan, A. Inoue // Acta Materialia. 2006. – Vol. 54. – P.3647-3656.

85. Shechtman, D. Metallic Phase with Long-Range Orientation Order and No Translational Symmetry / D. Shechtman, I. Blech // Physical Rev. Letters. 1984. – Vol. 53, N 20. – P. 1951-1954.

86. Quivy, A. A cubic approximant of the icosahedral phase in the (Al-Si)-Cu-Fe system
/ A. Quivy, M. Quiquandon, Y. Calvayrac, F. Faudot, D. Gratias, C. Berger, R. A. Brand,
V. Simonet, F. Hippert // J. Phys. Cond. Matter. 1996. – Vol. 8, N 23. – P. 4223-4234.

87. Henley, C. L. Quasicrystal structure of (Al,Zn)Mg / C. L. Henley, V. Elser // Philos.
Mag. 1986. – Vol. B53. – P. L59-66.

 Yamamoto, A. Structure Refinement of Quasicrystals / A. Yamamoto, H. Takakura // Ferroelectrics. 2004. – Vol. 305. – P. 223-227.

89. Tsai, A. P. Icosahedral clusters: icosahedral order and stability of quasicrystals – a view of metallurgy / A. P. Tsai // Sci. Technol. Adv. Mater. 2008. – Vol. 9. – P. 1-20.

90. Guo, J. Q. Stable icosahedral quasicrystals in the Cd-Mg-RE (RE = rare earth element) systems / J. Q. Guo, E. Abe, A. P. Tsai // Jpn. J. Appl. Phys. 2000. – Vol. 39. – P. L770-L771.

91. Tsai A. P. Alloys – A stable binary quasicrystal / A. P. Tsai, J. Q. Guo, E. Abe, H. Takakura // Nature. 2000. – Vol. 408. – P. 537-538.

92. Palenzona, A. The ytterbium-cadmium system / A. Palenzona // J. Less-Common Met.
1971. – Vol. 25. – P. 367-372.

93. Gomez, C. P. Comparative structural study of the disordered MCd6 quasicrystal approximants / C. P. Gomez, S. Lidin // Phys. Rev. 2003. – Vol. B68. – P. 1-9.

94. Gomez, C. P. Eu₄Cd₂₅: A Quasicrystal Approximant / C. P. Gomez, S. Lidin // Chem. Eur. J. 2004. – Vol. 10. – P. 3279-3285.

95. Armbrüster, M. Reassessing the compound CeCd6: the structure of Ce_6Cd_{37} / M. Armbrüster, S. Lidin // J. Alloy. Compd. 2000. – Vol. 307. – P. 141-148.

96. Piao, S. Y. Structural study of the disordered RECd₆ quasicrystal approximants (RE = Tb, Ho, Er, Tm and Lu) / S. Y. Piao, C. P. Gomez, S. Lidin // Z. Naturforsch. 2006. – Vol. 61. – P. 644-649.

97. Ohashi, S. Crystal growth of quasicrystal and partial phase diagram involving quasicrystal in the Ag-In-Yb system / S. Ohashi, J. Hasegawa, S. Takeuchi, A. P. Tsai // Philos. Mag. Lett. 2007. – Vol. 87. – P. 3089-3094.

98. Shoemaker, D. P. Concerning the relative numbers of atomic coordination types in tetrahedrally close-packed metal structures / D. P. Shoemaker, C. B. Shoemaker // Acta Cryst. 1986. – Vol. 42. – P. 3-11.

99. Alder, B. J. Molecular dynamics by electronic computers. In Transport Processes in Statistical Mechanics / B. J. Alder, T. E. Wainwright. – Interscience, New York, 1958. – P. 97-131.

100. Lee J. W. Structure Change with Size of Argon Clusters Formed in Laval Nozzle Beams / J. W. Lee, G. D. Stein // J. Phys. Chem. 1987. – Vol. 91. – P. 2450-2457.

101. Honneycutt, J. D. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters / J. D. Honneycutt, H. C. Andersen // J. Phys. Chem. 1987. – Vol. 91. – P. 4950-4963.

102. Van de Waal, B. W. Stability of face-centered cubic and icosahedral Lennard-Jones clusters / B. W. Van de Waal // J. Chem. Phys. 1989. – Vol. 90. – P. 3407-3408.

103. Farges, J. Structure and temperature of rare gas clusters in a supersonic expansion /
J. Farges, M. F. de Feraudy, B. Raoult, G. Torchet // Surf. Sci. 1981. – Vol. 106. – P. 95100.

104. Farges, J. Noncrystalline structure of argon clusters. I. Polyicosahedral structure of Ar_N clusters, 20 < N < 50 / J. Farges, M. F. de Feraudy, B. Raoult, G. Torchet // J. Chem. Phys. 1983. – Vol. 78. – P. 5067-5080.

105. Echt, O. Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters / O. Echt, K. Sattler, E. Recknagel // Phys. Rev. Letters. 1981. – Vol. 47. – P. 1121-1124.

106. Echt, O. Magic Numbers in Mass Spectra of Xe, C₂F₄Cl₂ and SF₆ Clusters / O. Echt,
A. Reyes Flotte, M. Knapp, K. Sattler, E. Recknagel // Ber. Bunsenges. phys. Chem.
1982. – Vol. 86. – P. 860-865.

107. Recknagel, E. Production and Properties of Atomic and Molecular Microclusters /
E. Recknagel // Ber. Bunsenges. phys. Chem. 1984. – Vol. 88. – P. 201-206.

108. Forges, J. Noncrystalline structure of argon clusters. II. Multilayer icosahedral structure of Ar_N clusters 50<N<750 / J. Forges, M. F. de Feraudy, B. Raoult, G. Torchet // J. Chem. Phys. 1986. – Vol. 84. – P. 3491-3501.

109. Scheier, P. Production and stability of neon cluster ions up to Ne_{90}^+ / P. Scheier // Chem. Phys. Letters. 1987. – Vol. 137. – P. 245-249.

110. Miehle, W. Mass spectrometric evidence for icosahedral structure in large rare gas clusters: Ar, Kr, Xe / W. Miehle, O. Kandler, T. Leisner, O. Echt // J. Chem Phys. 1989.
Vol. 91. – P. 5940-5952.

111. Lethbridge, P. G. An investigation of the properties of large krypton cluster ions (development of the P=3 and P=4 Mackay icosahedral shells) / P. G. Lethbridge, A. J. Stace // J. Chem. Phys. 1989. – Vol. 91. – P. 7685-7692.

112. Cleri, F. Tight-binding potentials for transitions metals and alloys /F. Cleri, V. Rosato // Phys. Rev. 1993. – Vol. B48. – P. 22-33.

113. Logsdail, A. J. Interdependence of structure and chemical order in high symmetry (PdAu)_N nanoclusters / A. J. Logsdail, R. L. Johnston // RSC Advances. 2012. – Vol. 2. – P. 5863-5869.

114. Hsu, P. J. Structures of bimetallic clusters / P. J. Hsu, S. K. Lai // J. Chem. Phys. 2006. – Vol. 124. – P. 044711(1)-044711(11).

115. Колесников, С. В. Моделирование самоорганизации наноконтактов в тонких пленках золота / С. В. Колесников, В. Л. Клавсюк, А. М. Салецкий // Физика твердого тела. 2013. – Т. 55, № 9. – С. 1834-1838.

116. Myshlyavtsev, A. V. Relative stability of icosahedral and cuboctahedral metallic nanoparticles / A. V. Myshlyavtsev, P. V. Stishenko // Adsorption. 2013. – Vol. 19. P. 795-801.

117. Okomoto, H. The Au-Zn (Gold-Zinc) System / H. Okomoto, T. B. Massalski // Bulletin of Alloy Phase Diagrams. 1989. – Vol. 10, N 1. – P. 59-69.

118. Liu, H. S. Thermodynamic assessment of the Au-Zn binary system / H. S. Liu, K. Ishida, Z. P. Jin, Y. Du // Intermetallics. 2003. – Vol. 11. – P. 987-994.

119. Pearson, W. B. The gold-zinc equilibrium diagram in the region 55–88 AT. % Zn /W. B. Pearson // J Less-Common Metals 1979. – Vol. 68. – P. P9-P15.

120. Willkens, M. Über die Kristallstrukturen von $Au_3Zn(r)$, Au_3Zn_5 und einigen Varianten / M. Willkens, M. Schubert // Z. Metallkd. 1958. – Vol. 49. – P. 633-646.

121. Iwasaki, H. Study on the Ordered Phases with Long Period in the Gold-Zinc Alloy System II. Structure Analysis of Au₃Zn [R1], Au₃Zn [R2] and Au₃₊Zn / H. Iwasaki // J. Phys. Soc. Jpn. 1962. – Vol. 17. – P. 1620-1633.

122. Thimmaiah, S. Rhombohedrally Distorted γ -Au_{5-x}Zn_{8+y} Phases in the Au-Zn System / S. Thimmaiah, G. J. Miller // Inorg. Chem. 2013. – Vol. 52. – P. 1328-1337.

123. Gotzmann, K. Powder diffraction data for the intermetallic compounds RhAl_{2.63}, IrAl_{2.75}, and AuZn₃ / K. Gotzmann, U. Burkhardt, Y. Grin // Powder Diffr. 1997. – Vol. 12. – P. 248-251.

124. Bradley, A. J. The Structure of γ -Brass / A. J. Bradley, J. Thewlis // Proc. R. Soc. Lond. 1926 – Vol. A112. – P. 678-692.

125. Owen, E. A. The solubility of certain metals in gold / E. A. Owen, E. A. O'Donnell Roberts // Journal of the Institute of Metals. 1945. – Vol. 71. – P. 213-254.

126. Schubert, K. Über einige metallische Ordnungsphasen mit grosser Periode / K. Schubert, M. Wilkens, R. Haufler // Z. Metallkd. 1955. – Vol. 46. – P. 692-715.

127. Owen, E. A. The Atomic Structure of AgMg and AuZn / E. A. Owen, G. D. Preston // Philos. Mag. 1926. – Vol. 2. – P. 1266-1270.

128. Schubert, K. Einige strukturelle Ergebnisse an metallischen Phasen II / K. Schubert, H. Breimer, W. Burkhardt, E. Gьnzel, R. Haufler, H. L. Lukas, H. Vetter, J. Wegst, M. Wilkens // Naturwissenschaften. 1957. – Vol. 44. – P. 229-230.

129. Massalski, T. B. The lattice spacing relationships in h.c.p. ε and η phases in the systems Cu-Zn, Ag-Zn; Au-Zn and Ag-Cd / T. B. Massalski, H. M. King // Acta Metall. 1962. – Vol. 10. – P. 1171-1181.

130. Iwasaki, H. J. The Crystal Structure and the Phase Transition of a Metastable Phase in the Au-37.8% Zn Alloy / H. J. Iwasaki // J. Phys. Soc. Jpn. 1965. – Vol. 20. – P. 2129-2140.

131. Provino, A. Unexpected crystal and magnetic structures in MnCu₄In and MnCu₄Sn / A. Provino, D. Paudyal, M. L. Fornasini, I. Dhiman, S. K. Dhar, A. Das, Y. Mudryk, P. Manfrinetti, V. K. Pecharsky // Acta Mater. 2013. – Vol. 61, N 6. – P. 2236-2243.

132. Oxley, D. P. Heusler Alloys / D. P. Oxley, R. S. Tebble, K. C. Williams // J. Appl.
Phys. 1963. – Vol. 34. – P. 1362-1364.

133. Natera, M. G. Atomic and magnetic structure of the heusler alloys Pd₂MnGe, Pd₂MnSn, Cu₂MnIn, and CoMnSb / M. G. Natera, M. R. L. N. Murthy, R. J. Begum, N. S. Satya Murthy // Phys. Status Solidi. 1970. – Vol. A3. – P. 959-964.

134. Myasnichenko, V. S. Formation of fivefold axes in the FCC-metal nanoclusters / V.

S. Myasnichenko, M. D. Starostenkov // Appl. Surf. Sci. 2012. - Vol. 260. - P. 51-53.

135. Hoare, M. R. Physical cluster mechanics: Statics and energy surfaces for monoatomic systems [Электронный ресурс] / M. R. Hoare, P. Pal // Adv. Phys. 1971. – V. 20,

N 84. – Р. 161-196. – Режим доступа: http://www-wales.ch.cam.ac.uk/CCD.html.

136. Cleri, F. Tight-binding potentials for transitions metals and alloys / F. Cleri, V. Rosato // Phys. Rev. 1993. – Vol. B48. – P. 22-33.

137. Verlet, L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules / L. Verlet // Phys. Rev. 1967. – Vol. 159. – P. 98-103.
138. Berendsen, H. J. C. Molecular-Dynamics with Coupling to an External Bath / H. J. C. Berendsen, W. F. van Gunsteren, A. DiNola, J. R. Haak // J. Chem. Phys. – 1984. – Vol. 81, N 8. – P. 3684-3690.

139. Bruker. AXS Inc. 2011. SADABS. Bruker. AXS Inc., Madison, WI, USA.

140. Sheldrick, G. M. SHELXL–97, Program for Crystal Structure Refinement and SHELXS–97, Program for the Solution of Crystal Structures / G. M. Sheldrick. – University of Goettingen, Germany. 1997.

141. Oxford Diffraction. CrysAlis CCD. Oxford Diffraction Ltd.: Abingdon, England.2006.

142. Petricek, V. The Crystallographic Computing System. Jana 2006 / V. Petricek, M. Dusek, L. Palatinus. – Institute of Physics: Praha, Czech Republic. 2006.

143. Andersen, O. K. Explicit, First-Principles Tight-Binding Theory / O. K. Andersen,
O. Jepsen // Phys. Rev. Letters. 1984. – Vol. 53. – P. 2571-2574.

144. Wallbaum, H. J. Zirconium rhenide / H. J. Wallbaum // Naturwissenschaften. 1942.
Vol. 30. – P. 149.

145. Amberg, L. The Structures of the γ -Phases in the Pd-Cd and Pt-Cd Systems L. Amberg // Acta Cryst. 1980. – Vol. B36. – P. 527-532.

146. He, W. Rietveld refinement of ternary compound Gd₁₁₇Fe₅₂Ge₁₁₂ / W. He, J. Zhang, L. Zeng // Powder Diffr. 2007. – Vol. 22. P. 312-315.

147. Lux, R. Synthesis and crystal structure of cubic V₁₁Cu₉Ga₄₆ - A 512-fold super structure of a simple bcc packing / R. Lux, V. Kuntze, H. Hillebrecht // Solid State Sci. 2012. – Vol. 14. P. 1445-1453.

148. He, W. Crystal-structure and magnetic properties of the new ternary compound $Pr_{117}Co_{57}Sn_{112}$ / W. He, J. Zhang, J. Yan, Y. Fu, L. Zeng // J. Alloys Compd. 2010. – Vol. 491. – P. 49-52.

149. Dinges, T. Synthesis and structure of $Li_8Rh_7Sn_8$ and $Li_{1.23}Rh_{1.77}Sn / T$. Dinges, R. Poettgen // Z. Kristallogr. 2010. – Vol. 225. – P. 405-411.

150. Mizusaki, S. Ferromagnetism and spin reorientation in Sm₁₂Fe₁₄Al₅ / S. Mizusaki,
N. Kawamura, T. Taniguchi, Y. Nagata, T. C. Ozawa, A. Sato, Y. Noro, H. Samata // J.
Magn. Magn. Mater. 2010. – Vol. 322. – P. L19-L24.

151. Xia, S. Q. Zintl phase variations through cation selection. Synthesis and structure of A₂₁Cd₄Pn₁₈ (A= Eu, Sr, Ba; Pn= Sb, Bi) / S. Q. Xia, S. Bobev // Inorg. Chem. 2008. – Vol. 47. – P. 1919-1921.

152. Wallbaum, H. J. Ergebnisse der röntgenographischen Strukturuntersuchung von Legierungen der Zusammensetzung AB2 der Eisenmetalle mit Titan, Zirkon, Niob und Tantal (1) / H. J. Wallbaum // Z. Kristallogr. 1941. – Vol. 103. – P. 391-402.

153. Adam, J. The Crystal Structure of WAI~2, MoAI~2 and (Mn, Cr)AI~2 / J. Adam, J.
B. Rich // Acta Cryst. 1954. – Vol. 7. – P. 813-816.

154. Pan, V. M. The Nb-Ga-Cu Phase Diagram / V. M. Pan, V. I. Latysheva, O. G. Kulik,
V. V. Gorskii // Russian Metallurgy. 1982. – Vol. i2. – P. 195-197.

155. Linsinger, S. Intermediate-valent Cerium in CeRu₂Mg₅ / S. Linsinger, M. Eul, U. C. Rodewald, R. Poettgen // Zeitschrift fuer Naturforschung. 2010. – Vol. B65. – P. 1185-1190.

156. Fornasini, L. The crystal structure of Ca₂Cu₂Ga, CaCuGa, SrCu₂Ga and BaCu₂Ga /
L. Fornasini, F. J. Merlo // J. Less-Common Met. 1988. – Vol. 142. – P. 289-294.

157. Hlukhyy, V. From one to three dimensions: Corrugated ${}^{1}_{\infty}$ [NiGe] ribbons as building block in alkaline-earth metal Ae/Ni/Ge phases. Crystal structure and chemical bonding in AeNiGe (Ae = Mg, Sr, Ba) / V. Hlukhyy, L. Siggelkow, T. F. Faessler // Inorg. Chem. 2013. – Vol. 52, N 12. – P. 6905-6915.

158. Siggelkow, L. BaNi₂Ge and Ca₄Ni₄Ge₃ - Two layered Structures with (2)(infinity)Ni2Ge. and (2)(infinity)Ni4Ge3. Networks / L. Siggelkow, V. Hlukhyy, T. F. Faessler // Z. Anorg. Allg. Chem. 2010. – Vol. 636. – P. 1870-1879.

159. Buchler, H. Hydrolysis of lanthanide dicarbides: rates of reaction with water vapour / H. Buchler, K.-J. Range // J. Less-Common Met. 1990. – Vol. 161. – P. 347-354.

160. Wallbaum, H. J. Ergebnisse der röntgenographischen Strukturuntersuchung von Legierungen der Zusammensetzung AB₂ der Eisenmetalle mit Titan, Zirkon, Niob und Tantal (1) / H. J. Wallbaum // Z. Kristallogr. 1941. – Vol. 103. – P. 391-402. 161. Johansson, A. X-Ray and Neutron Diffraction Studies on Gamma-Ni, Zn and Gamma-Fe, Zn / A. Johansson, H. Ljung, S. Westman // Acta Chem. Scand. 1968. – Vol. 22. – P. 2743-2753.

162. Brandon, J. K. New refinements of gamma-brass type structures Cu_5Zn_8 , Cu_5Cd_8 and Fe_3Zn_{10} / J. K. Brandon, R. Y. Brizard, P. C. Chieh, R. K. McMillan, W. B. Pearson // Acta Cryst. 1974. – Vol. B30. – P. 1412-1417.

163. Biehl, K. K₂Hg₇ und Rb₂Hg₇, zwei Vertreter eines neuen Strukturtyps binärer intermetallischer Verbindungen / K. Biehl, H. J. Dieseroth // Z. Anorg. Allg. Chem. 1999. – Vol. 625. – P. 1337-1342.

164. Vrtis, M. L. Structural phase transition in CeCu₆ / M. L. Vrtis, J. D. Jorgensen, D.
G. Hinks // Physica B+C. 1986. – V. B136. – P. 489-492.

165. Newkirk, J. B. Damjanovic A. The refinement of the Co₂Al₅ structures / J. B. Newkirk, P. J. Black // Acta Cryst. 1961. – Vol. 14. – P. 532-533.

166. Bie, H. Ternary rare-earth titanium antimonides: Phase equilibria in the RE–Ti–Sb (RE = La, Er) systems and crystal structures of RE2Ti7Sb12 (RE=La, Ce, Pr, Nd) and RETi3(SnxSb1–x)4 (RE=Nd, Sm) / H. Bie, D. Moore, D. G. Pierceya, A. V. Tkachuk, O. YA. Zelinska, A. J. Mar // J. Solid State Chem. 2007. – Vol. 180. – P. 2216-2224.

167. Yubko, B. G. The Crystal Structure of Ti_2Ni / B . G. Yubko, J. W. Barton, J. G. Parr // Acta Cryst. 1959. – V. 12. – P. 909-911.

168. Zaremba, R. The Rare Earth Metal-Rich Indides RE_4RhIn (RE = Gd–Tm, Lu) / R. Zaremba, U. C. Rodewald, R. D. Hoffmann, R. Poettgen // Monatshefte fuer Chemie. 2007. – Vol. 138. – P. 523-528.

169. Calvert, L. D. The crystal structure of Ag₈Ca₃ / L. D. Calvert, C. Rand // Acta Cryst. 1964. – Vol. 17. – P. 1175-1176.

170. Zeng, L. Structure of $Ag_3Cu_{12}Y_5$, a New Ternary Compound / L. Zeng, D. Ki, Y. Zhuang // Acta Cryst. 1993. – Vol. C49. – P. 1559-1561.

171. Hoehn, P. Sr₂Ni₃ – A Strontium Subnickelide? / P. Hoehn, S. Agrestini, A. Baranov,
S. Hoffmann, M. Kohout, F. Nitsche, F. R. Wagner, R. Kniep // Chem. Eur. J. 2011. –
Vol. 17, N 12. – P. 3347-3351.

172. Cordier, G. Crystal structure of ytterbium silver (2/7), Yb₂Ag₇ / G. Cordier, R. Henseleit // Z. Kristallogr. 1991. – Vol. 194. – P. 146-147.

173. Dattagupta, J. K. Uber die Isotopie von Zr_2Ni_7 und Hf_2Ni_7 / J . K. Dattagupta, K. Schubert // Z. Metallkd. 1973. – Vol. 64. – P. 789-792.

174. Harbrecht, B. τ -Al_{2.9}Ta_{2.7}V_{1.4}, a new type of pentagonal antiprismatic columnar structure / B. Harbrecht, N. Rheindorf, V. Wagner // J. Alloys Compd. 1996. – Vol. 234. – P. 6-11.

175. Hoffmann, R. D. Structure, chemical bonding and properties of $Sr_2Rh_2In_3$ and $Sr_3Ir_4Sn_4$ / R. D. Hoffmann, D. Kussmann, R. Poettgen // International Journal of Inorganic Materials. 2000. – V. 2. – P. 135-141.

176. Brandon, J. K. The crystallographic analysis of InMn3, a new form of γ -brass structure with a P cell / J. K. Brandon, H. S. Kim, W. B. Pearson // Acta Cryst. 1937. – Vol. B35. – P. 1937-1944.

177. Hellner, E. Kristallchemie des In und Ga in Legierungen mit einigen Übergangselementen (Ni, Pd, Pt, Cu, Ag und Au) / E. Helner, F. Laves // Z. Naturforsch. 1947. – Vol.
2. – P. 177-183.

178. Sands D. E. The Crystal Structure of Ru₃Be₁₇ / D. E. Sands, Q. C. Johnson, O. H. Krikorian, K. L. Kromholtz // Acta Cryst. 1962. – Vol. 15. – P. 1191-1195.

179. Sportouch, S. Crystal structure of potassium indium germanium, $K_8In_6Ge_{40}$ / S. Sportouch // Z. Kristallogr. 1994. – V. B209. – P. 541-541.

180. Palenzona, A. Ytterbium-Cadmium System / A. Palenzona // J. Less-Comm. Met. 1971. – Vol. 25. – P. 367-372.

181. Ilyushin, G. D. Cluster self-organization of intermetallic systems: Quasi-spherical nanocluster precursors with internal Friauf polyhedra (A-172) and icosahedra (B-137) in the $Li_{19}Na_8Ba_{15}$ (hP842) crystal structure / G. D. Ilyushin, V. A. Blatov // Cryst. Rep. 2010. – V. 55, N 7. – P. 1093-1099.

182. Gomez, C. P. Superstructure of Eu₄Cd₂₅: A Quasicrystal Approximant / C. P. Gomez,
S. Lidin // Chem. Eur. J. 2004. – Vol. 10. – P. 3279-3285.

183. Fornasini, M. L. Crystal Structure and Magnetic Properties of the Compounds Yb(Zn,Al)~6 and YbZn~6 / M. L. Fornasini, P. Manfrinetti, D. Mazzone, S. K. Dhar // Z. Naturforsch. 2008. – Vol. B63. – P. 237-243.

184. Bobev, S. Clathrate III of Group 14 Exists After All / S. Bobev, S. C. Sevov // J. Am. Chem. Soc. 2001. – Vol. 123. – P. 3389-3390.

185. Larson, A. C. The crystal structure of YCd_6 / A. C. Larson, D. T. Cromer // Acta Cryst. 1971. – V. B27. – P. 1875-1879.

186. Cordier, G. Ca₃Cd₁₇Al: Eine ternäre verzerrungsvariante des YCd₆-strukturtyps / G. Cordier, E. Czech, H. Schaefer // J. Less-Common Met. 1986. – Vol. 118. – P. 57-65.

187. Boulet, P. Phase equilibria and magnetic studies in the ternary system Ce-Au-Sn /

P. Boulet, D. Mazzone, H. Noel, P. Rogl, R. Ferro // J. Alloys Compd. 2001. – Vol. 317. – P. 350-356.

188. Gomez, C. P. Comparative structural study of the disordered MCd₆ quasicrystal approximants / C. P. Gomez, S. Lidin // Phys Rev. 2003. – Vol. B68. – P. 024203-1-024203-9.

189. Blatov, V. A. Nanocluster Model of Intermetallic Compounds with Giant Unit Cells: β , β' -Mg₂Al₃ Polymorphs / V. A. Blatov, G. D. Ilyushin, D. M. Proserpio // Inorg. Chem. 2010. – Vol. 49, N 4. – P. 1811-1818.

190. Илюшин, Г. Д. Компьютерное моделирование самосборки кристаллической структуры паулингтипа из супраполиэдрических нанокластеров-прекурсоров из К6, К16 и К20 / Г. Д. Илюшин, В. А. Блатов // Кристаллография. 2011. – Т. 56, № 1. – С. 80-88.

191. Tillard-Charbonnel, M. Crystal structure of sodium gold gallium, Na₁₂₈Au₈₁Ga₂₇₅ / M. Tillard-Charbonnel, C. Belin, N. Z. Chouaibi // Z. Kristallogr – Crystalline Materials.
1993. – Vol. 206. – P. 310-312.

192. Cordier, G. Crystal structure of potassium thallide (49/108), K₄₉Tl₁₀₈ / G. Cordier,
V. Mueller, R. Z. Froehlich // Z. Kristallogr. 1993. – Vol. 203. – P. 148-149.

193. Smetana, V. Icosahedral Li clusters in the structures of $Li_{33.3}Ba_{13.1}Ca_3$ and $Li_{18.9}Na_{8.3}Ba_{15.3}$ / V. Smetana, V. Babizhetskyy, C. Hoch, A. J. Simon // Solid State Chem. 2007. – V. 180. – P. 3302-3309.

194. Qisheng, L. Development of an Icosahedral Quasicrystal and Two Approximants in the Ca–Au–Sn System: Syntheses and Structural Analyses / L. Qisheng, J. D. Corbett // Inorg. Chem. 2010. – V. 49, N 22. – P. 10436-444.

195. Tursina, A. I. A new ternary indide, Ce₂₀Pd₃₆In₆₇ / A. I. Tursina, S. N. Nesterenko,
H. Noel, Y. D. Seropegin // Acta Cryst. 2005. – V. E61. – P. i99-i101.

196. Szytula, A. Crystal and magnetic structure of $Ni_2Mn_5Bi_4$, and $Cu_4Mn_3Bi_4$ / A. Szy-

tula, H. Bińczycka, J. Todorović // Solid State Commun. 1981. – V. 38. – P. 41-43.

197. Florio, J. V. Compounds of thorium with transition metals. I. The thorium–manganese system /J. V. Florio // Acta Cryst. 1952. – V. 5. – P. 449-457.

198. Smetana, V. Li₂₆ Clusters in the Compound Li₁₃Na₂₉Ba₁₉ / V. Smetana, V. Babizhetskyy, G. Vajenine, A. Simon // Angew. Chem., Int. Ed. 2006. – V. 45. – P. 6051-6053.

199. Ljung, H. X-Ray Determination of the Structure of the Primitive Cubic Gamma Ni,Cd-Phase / H. Ljung, S. Westman // Acta Chem. Scand. 1970. – V. 24. – P. 611-617.
200. Sugiyama, K. On the crystal structures of the Al–Cu–Cr alloy system / K. Sugiyama,

H. Saito, K. J. Hiraga // Alloys Compd. 2002. – V. 342. – P. 148-152.

201. Samson, S. Complex cubic A_6B compounds. I. The crystal structure of Na_6Tl / S . Samson, D. A. Hansen // Acta Crystallogr. 1972. – V. B28. – P. 930-935.

202. Gribanov, A. V. Crystal structure of the new compound Ce₃Pt₂₃Ge₁₁ / A. V. Gribanov, Yu. D. Seropegin, O. I. Bodak, V. V. Pavlyuk, L. G. Aksel'ru, V. N. Nikiforov, A. A. Velikhovskii // J. Alloys Compd. 1993. – V. 202. – P. 133-136.

203. Samson, S. Complex cubic A_6B compounds. II. The crystal structure of Mg_6Pd / S . Samson // Acta Crystallogr. 1972. – V. B28. – P. 936-945.

204. Bobev, S. Naked Clusters of 56 Tin Atoms in the Solid State / S. Bobev, S. C. Sevov // J. Am. Chem. Soc. 2002. – V. 124. – P. 3359-3365.

205. Armbruster, M. Reassessing the compound CeCd₆: the structure of Ce₆Cd₃₇ / M. Armbruster, S. Lidin // J. Alloys Compd. 2000. – V. 307. – P. 141-148.

206. Sichevich, O. M. Crystal structure of TmRuGa₃ and its analogons / O. M. Sichevich, V. A. Bruskov, Y. N. Grin // Kristallografia. 1989. – V. 34. – P. 1571-1573.

207. Biehl, E. Strukturchemie und Magnetismus der Amalgame MHg₁₁ (M: K, Rb, Ba, Sr) / E. Biehl, H. J. Deiseroth // Z. Anorg. Allg. Chem. 1999. – V. 625. – P. 1073-1080.
208. Gulay, L. D. Investigation of the titanium–indium system / L. D. Gulay, J. C. Schuster // J. Alloys Compd. 2003. – Vol. 360. – P. 137-142.

209. Hornfeck, W. Structure-Composition Relations for the Partly Disordered Hume-Rothery Phase $Ir_{7+7\delta}Zn_{97-11\delta}$ (0.31 $\leq\delta\leq$ 0.58) / W. Hornfeck, S. Thimmaiah, S. Lee, B. Harbrecht // Chem. Eur. J. 2004. – Vol. 10. – P. 4616-4626.

210. Lidin, S. (Fe,Ni)Zn_{6.5}, a superstructure of γ -brass / S. Lidin, M. Jacob, A. K. Larsson // Acta Cryst. 1994. – Vol. C50. – P. 340-343.

211. Obrowski, W. On the Alloys of Ruthenium with Boron, Berylium and Aluminium /
W. Obrowski // Metall. (Berlin). 1963. – Vol. 17. – P. 108-112.

212. Zheng, W. Z. Rb₁₆Cd_{25.39(3)}Sb₃₆: An electron-deficient Zintl phase containing infinite dodecahedron chains / W. Z. Zheng, P. Wang, L. M. Wu, Y. Liu, L. Chen // Inorg. Chem. 2010. – Vol. 49. – P. 5890-5896.

213. Bobev, S. Clathrate III of Group 14 Exists After All / S. Bobev, S. C. Sevov // J. Am. Chem. Soc. 2010. – Vol. 123. P. 3389-3390.

214. Bobev, S. Synthesis and Characterization of $A_3Na_{10}Sn_{23}$ (A= Cs, Rb, K) with a New Clathrate-Like Structure and of the Chiral Clathrate $Rb_5Na_3Sn_{25}$ / S. Bobev, S. C. Sevov // Inorg. Chem. 2000. – Vol. 39. – P. 5930-5937.

215. Nolas, G. S. Structural Characterization and Thermal Conductivity of Type-I Tin Clathrates / G. S. Nolas, B. C. Chakoumakos, B. Mahieu, G. J. Long, T. J. R. Weakley // Chem. Mater. 2000. – Vol. 12. – P. 1947-1953.

216. Krypyakevych, P. I. The RCr₂Al₂₀ compounds in the systems of the rare earth metals and calcium and their crystal structures / P. I. Krypyakevych, O. S. Zarechnyk // Dopov. Akad. Nauk Ukr. RSR, Ser A. 1968. – P. 364-367.

217. Berns, V. M. Mg₁₁Cu₆Al₁₂, A new link in the structural chemistry of MgCu₂-type clusters / V. M. Berns, T. E. Stacey, M. Sapiro, D. C. Fredrickson // Eur. J. Inorg. Chem. 2011. – P. 3936-3949.

218. Stojanovic, M. Europium substitution into intermetallic phases grown in Ca/Zn flux / M. Stojanovic, S. E. Latturner // J. Solid State Chem. 2009. – Vol. 182. – P. 2239-2245.

219. Jana, P. P. Site Preference and Ordering Induced by Au Substitution in the γ-Brass Related Complex Au–Cr–Zn Phases / P. P. Jana, R. Henderson, B. Harbrecht, S. Lidin // Inorg. Chem. 2013. – Vol. 52, N 9. – P. 4812-4818.

220. Sugiyama, K. On the crystal structures of the Al-Cu-Cr alloy system / K. Sugiyama, H. Saito, K. Hiraga // J. Alloys Compd. 2002. – Vol. 342. – P. 148-152.

- 221. Yvon, K. The Crystal Structure of Mo₆Ga₃₁, a Hypersymmetrical Structure Solved by Direct Methods / K. Yvon // Acta Cryst. 1974. Vol. B30. P. 853-861.
- 222. Fleischer, F. o'-Al₁₃Co₄, a new quasicrystal approximant / F. Fleischer, T. Weber, D.-Y. Jung, W. Steurer // J. Alloys Compd. 2010. Vol. 500. P. 153-160.

223. Pavlyuk, V. V. Structure Refinement of Orthorhombic MnAl₃ / V. V. Pavlyuk, T. I.

Yanson, O. Bodak, R. Cerny, R. E. Gladyshevskii, K. Yvon, Yu. Stepien-Damm // Acta Cryst. 1995. – Vol. C51. – P. 792-794.

224. Kisi, E. H. Ordering and structural vacancies in non-stoichiometric Cu-Al γ -brasses / E. H. Kisi, J. D. Browne // Acta Cryst. 1991. – Vol. B47. – P. 835-843.

225. Goward, G. R. The true crystal structure of $Li_{17}M_4$ (M= Ge, Sn, Pb) - revised from $Li_{22}M_5$ / G. R. Goward, N. J. Taylor, D. C. S. Souza, L. F. Nazar // J. Alloys Compd. 2001. – Vol. 329. – P. 82-91.

226. Weber, T. Large, larger, largest - A family of cluster-based tantalum copper aluminides with giant unit cells. I. Structure solution and refinement / T. Weber, J.

Dshemuchadse, M. Kobas, M. Conrad, B. Harbrecht, W. Steurer // Acta Crystallogr. 2009. – Vol. B65. – P. 308-317.

227. Fornasini, M. L. The Crystal Structure of $Sm_{11}Cd_{45}$ with γ -Brass and α -Mn Clusters / M. L. Fornasini, B. Chabot, E. Parthe // Acta Crystallogr. 1978. – Vol. B34. – P. 2093-2099.

228. Flandorfer H. The Ce-Mg-Y System / H. Flandorfer, A. Kostikas, P. Rogl, C. Godart, M. Giovannini, A. Saccone, R. Ferro // Metall. Mater. Trans. 1997. – Vol. A28. – P. 265-276.

229. Dinges, T. Synthesis and structure of $Li_8Rh_7Sn_8$ and $Li_{1.23}Rh_{1.77}Sn / T$. Dinges, R. Poettgen // Z. Kristallogr. 2010. – Vol. 225. – P. 405-411.

230. Fornasini, M. L. GdMg₅: a Complex Structure with a Large Cubic Cell / M. L. Fornasini, P. Manfrinetti, K. A. Gschneidner // Acta Crystallogr. 1986. – Vol. C42. – P. 138-141.

231. Lacroix-Orio, L. Crystal structure of a Zn-doped derivative of the Li₁₇Ge₄ com-

pound / L. Lacroix-Orio, M. Tillard, C. Belin // J. Alloys Compd. 2008. – Vol. 465. – P. 47-50.

Приложение

Таблица П. 1

Распределение топологических типов интерметаллидов

Сетка	Пример структуры	КЧ узлов	Количество структур
fcu	Ca ₃ Hg	12	3235
bcu-x	TlBi	14	2658
mgc-x	MgCu ₂	12,16	1879
hcp	LiHg ₃	12	992
11,14T3	Au_2U	11,14	823
12,12,18T1	CaCu ₆	12,12,18	777
12,12,14,20T1	ThMn ₁₂	12,12,14,20	759
9,12,16T1	BaAl ₄	9,12,16	655
bet	Mo ₃ Zr	12,14	381
9,9,12,15T1	AlFeU	9,9,12,15	373
mgz-x	MgZn ₂	12,12,16	346
sqc1279	PtAl ₂	8,10	333
11,14,15T1	Mg ₅ Hg ₃	11,14,15	285
10,16T1	KHg ₂	10,16	277
8,8,8,20,24T1	K_8Ge_{46}	8,8,20,24	265
12,12,12,14,19T1	Ba_2Mg_{17}	12,12,12,14,19	259
12,12,12,14,20T1	Nd_2Fe_{17}	12,12,12,14,20	240
8,12,12,13,16T1	Th_6Mn_{23}	8,12,12,13,16	231
12,12,14,15,20T1	TiBe ₁₂	12,12,14,15,20	218
9,12T2	CaGa ₂	9,12	212
12,12,13,14,18,20T1	Pu_2Ni_{17}	12,12,13,14,18,20	198
nzn	NaZn ₁₃	12,12,24	192
12,12,14,14,15T1	β-U	12,12,14,14,15	191
12,12,12,16,20T1	Co ₃ Th	12,12,12,16,20	170
9,12,14,16T1	$Ca_3Co_4Sn_{13}$	9,12,14,16	158
9,10,12,17T1	La_2CoSn_4	9,10,12,17	155
9,12,15T1	Ca ₂ Ge	9,12,15	150
рси	α-Po	6	140
9,12,13T2	Sr ₂ Sb	9,12,13	136
tcj/hc	TiNi ₃	12,12	125
8,12T1	CuSn	8,12	115
amn	Mg ₂₄ Y ₅	12,13,16,16	106
12,12,20T1	LaZn ₅	12,12,20	97
tcl	BaPb ₃	12,12	97
12,12,12,14,16T1	$Mg_3Cr_2Al_{18}$	12,12,12,14,16	97
Другие			10647

Распределение интерметаллидов и их топологических типов по 14 решеткам Бравэ

Решетка Бравэ	Количество интерметаллидов	Количество топ. типов интерметаллидов
aP	70	37
cF	5531	98
cI	1612	78
cP	2792	63
hP	6742	373
hR	1299	136
mP	292	142
mS	475	209
oF	94	33
Io	711	118
oP	2002	409
oS	1598	292
tI	2911	180
tP	1843	174

Таблица 3

Распределение интерметаллидов и их топологических типов по 32 кристаллическим классам

Кристаллический	Количество	Количество топ. типов
класс	интерметаллидов	интерметаллидов
C ₁	19	5
C_2	39	11
C _{2h}	698	317
C_{2v}	213	90
C ₃	28	15
C _{3h}	17	6
C _{3i}	130	28
C _{3v}	42	18
C_4	10	5
C _{4h}	76	22
C_{4v}	106	16
C ₆	10	3
C _{6h}	119	28
C _{6v}	298	35
Ci	51	32

Cs	30	23
D_2	55	18
D_{2d}	77	26
D_{2h}	4137	744
D_3	25	11
D _{3d}	1358	121
D _{3h}	841	60
D_4	33	9
D_{4h}	4442	275
D_6	43	3
D _{6h}	5130	181
0	62	9
O _h	8197	83
S_4	10	1
Т	86	15
T _d	1232	81
T _h	358	51

Продолжение таблицы П. 3

Таблица 4

Распределение интерметаллидов и их топологических типов по пространственным группам симметрии

Пространственная	Количество	Количество топ. типов
группа симметрии	интерметаллидов	интерметаллидов
P6 ₃ /mmc	2940	116
Fm3m	2603	22
I4/mmm	1946	60
Fd3m	1858	19
Pm∃m	1739	4
P6/mmm	1719	42
Pnma	1320	217
Cmcm	1173	138
R3m	1087	74
Im3̄m	996	10
F43m	886	48
Pm3n	806	11
Pē2m	735	36
P4/nmm	524	32
P6 ₃ /mcm	471	23
Другие	7169	1490

141

Распределение различных типов локального связывания неэквивалентных икосаэдров по 12 топологическим типам базовых сеток

Формуј	18	Базовая сетка	Прототип	Кол-во структур	Формул	Ia	Базовая сетка	Прототип	Кол-во структур
$1@ico_{f_3^1+e^1}^{8+6}$		bcu-x	Mo ₃ Zr	427	$1@ico_{f_3^1+e^1+v^1}^{2+2+4}$		hex	PuCu ₆	39
$1@ico_{b^6+b^2}^{8+6}$		bcu-x	WAl ₁₂	9	$1@ico_{b^{12}+e^{1}}^{2+6}$		hex	K ₂ Hg ₇	2
$1@ico_{e^1+b^4+b^1}^{2+8+4}$		bcu-x	Nb(Cu _{0.5} G a _{0.5})	1	$1@ico_{e^{1}+v^{1}}^{3+4}$		(36.412.53)	NdTi ₃ (Sn _{0.} 1Sb _{0.9}) ₄	2
1@ico ¹² v ¹		fcu	CeRu ₂ Mg ₅	1	$1@ico_{f_3^1}^6$		рси	Ca ₃ Ag ₈	19
$1@ico_{f_3^2+e^1}^{6+6}$		fcu	Cu ₂ GaSr	4	$1@ico_{f_3^2}^6$		hxl	Sr ₂ Ni ₃	1
$1@ico_{f_3^1+v^1}^{6+6}$		fcu	AlAu ₄	9	$1@ico_{f_3^1}^6$		crs	Ti ₂ Ni, Gd4RhIn	100
$1@ico_{f_3^1+v^1+e^1}^{1+3+6}$		tca	TaCo ₂	81	$1@ico_{f_3^1+e^1}^{4+2}$		hxl	$\begin{array}{c} Al_{2.88}Ta_{2.66} \\ V_{1.46} \end{array}$	1
$1@ico_{f_3^{1+v^1}}^{3+6}$		ncb	$\begin{array}{c} Ni_4Zn_{22} \\ C\Gamma_5Zn_8 \end{array}$	22	$1@ico_{v^{1}+e^{1}}^{4+2}$		hxl	Yb ₂ Ag ₇ Hf ₂ Co ₇ Zr ₂ Ni ₇	4

$1@ico_{f_3^1+e^1}^{2+6}$	hex	WBe ₂ Fe ₂ Ta	766	$1@ico_{f_3^2+e^1}^{2+4}$	hxl	Sr ₂ Rh ₂ In ₃	1
$1@ico_{f_3^1+b^4}^{2+6}$	hex	Co ₂ Al ₅	2	$1@ico_{f_3^1+e^1}^{2+2}$	sql	Cs ₃ NaPb ₄	1
$1@ico_{e^1+b^7}^{2+2}$	dia	Fe2Ga6Sc3 Hf3Cu8	5	$0@ico_{f_3^1}^6$	lcy	Y ₅ Ag ₃ Cu ₁₂	3
$0@ico_{e^1+b^4+b^1}^{2+8+4}$	 bcu-x	Nb ₂ Al	1	$0@ico_{f_3^1+e^1}^{2+6}$	hex	WBe ₂	7

Продолжение таблицы П. 5

Таблица П. 6

Распределение различных типов локального связывания неэквивалентных икосаэдров по 9 топологическим типам базовых сеток

Форму.	ла	Базовая сетка	Прототип	Кол-во структур
$2(1@ico_{f_3^1+v^1}^{3+6})$		ncb	Mn ₃ In, Ag ₉ Ca ₈ Hg ₉	8
$2(1@ico_{f_3^1+e^1+v^1}^{1+6+3}) + 1@ico_{f_3^1+e^1}^{2+6}$		new	(AlCu)Mg	3
$1@ico_{f_3^1+e^1}^{3+6} + 1@ico_{f_3^1+e^1}^{3+4}$		new	(Cr9Mo21Ni20)1.12	3

143

Продолжение таблицы П. 6

$2(1@ico_{f_3^1+v^1}^{3+6})$		new	MoNi	1
$2(1@ico_{f_3^1+e^1+v^1}^{1+1+9})$				
$1@ico_{f_3^1+v^1+e^1}^{1+3+6} + 1@ico_{f_3^1+e^1}^{2+6}$		new	Mg ₁₆ Zn ₃₁ Cu	1
$1@ico_{f_3^1+v^1}^{6+2} + 1@ico_{f_3^1+e^1+v^1}^{4+2+4}$	h	new	HfCrGa ₂	3
$2(1@ico_{f_3^1+e^1+v^1}^{4+2+4})$		new	Y2Ni7Sn3	1
$2(1@ico_{f_3^1+e^1+v^1}^{1+3+5})$		new	Al7Nb24Ni21	1
$\frac{1@ico_{f_3^1+e^1+v^1}^{1+5+1} + 1@ico_{f_3^1+e^1}^{2+2} + \\1@ico_{f_3^1+e^1+v^1}^{2+4+1} + \\$		new	Nb ₂₈ Ni _{33.56} Sb _{12.44}	1
Химический состав 324 упорядоченных бинарных интерметаллидов

Пр. группа	Точеч- ная группа	Суперкластер	Базовая сетка	Ц.А. (А)	Сфера (М)	Топология структуры	Кол-во структур
I m3m	$\overline{3}m$	$1@ico_{f_3^1}^6$	pcu	Ag	A6+M6 (M = Ca)	12,12,16T1	1
F d3m	3m	$1@ico_{f_3^1}^6$	crs	Co Hf Mg Mn Na Ni Sc Ti Zr	$\begin{array}{l} A6+M6 \ (M=Hf) \\ A6+M6 \ (M=Fe, Ir, Mn, Os, Pd, Pt, Rh) \\ A6+M6 \ (M=Pd) \\ A6+M6 \ (M=Hf) \\ A6+M6 \ (M=Cd); \ M12 \ (M=Nb, Ta) \\ A6+M6 \ (M=Cd); \ M12 \ (M=Nb, Ta) \\ A6+M6 \ (M=Co, Cu, Fe, Ni) \\ A6+M6 \ (M=Cu, Co, Ir, Pt, Rh, Fe) \end{array}$	12,12,14T1	27
P m3n	m3	$1@ico_{f_3^1+e^1}^{8+6}$	bcu-x	Al Au Be Bi, Sn Cd, Co, Fe, Ni Ga, Ge Hg In Ir, Pt Os Pb Pd Re Rh Ru Sb	$ \begin{array}{l} M12 \ (M = Mo, Nb, V) \\ M12 \ (M = Ta, Zr, Ti, V, Nb, Ti) \\ M12 \ (M = Mo) \\ M12 \ (M = Mo) \\ M12 \ (M = Nb) \\ M12 \ (M = V) \\ M12 \ (M = Cr, Mo, Nb, V) \\ M12 \ (M = Ti, Zr) \\ M12 \ (M = Nb) \\ M12 \ (M = Nb) \\ M12 \ (M = V, Cr, Ti, Mo, Nb) \\ M12 \ (M = Cr, Mo, Nb) \\ M12 \ (M = Cr, Mo, Nb) \\ M12 \ (M = Ti) \\ M12 \ (M = Ti) \\ M12 \ (M = Ti) \\ M12 \ (M = Cr, Nb, V) \\ M12 \ (M = Cr, Nb, V) \\ M12 \ (M = Cr) \\ M12 \ (M = Nb, Ta, Ti, V) \end{array} $	bet	78

				C.n	$M12 (M - M_0) \text{ NIL} (7 - M_0)$		
					M12 (M = M0, N0, Zr, Ta, V)		
					M12 (M = Nb)		
				V	M12 (M = Ge, Re, Sb)		
				Zr	M12 (M = Mo)		
		216		Ni, Rh, Ir	M12 (M = Zn)	12 12 13 13T	
I 43m	3m	$1@ico_{f_{2}^{1}+v^{1}}^{3+6}$	ncb	Cu	A3 + M9 (M = Zn	12,12,13,131	5
		53.1		Ag	A3 + M9 (M = Cd)	1	
I m3	m3	$1@ico_{b^6+b^2}^{8+6}$	bcu-x	Mo, Re, Tc, W	M12 (M = Al)	11,12T1	5
				Al	M12 (M = Au, Cu)		
P 2 ₁ 3	3	$1@ico^{6+6}_{f_3^2+e^1}$	fcu	Au	A9+M3 (M = Al)	12,14T1	2
				Cu	A9+M3(M = Al)	,	
				Al	A6+M6 (M = U)		
				Co	A6+M6 ($M = Nb$, Ta, Ti)		
				Cr	A6+M6 (M = Ti, Hf, Zr)		
				Fe	A6+M6 (M = Nb. Hf. Sc. Zr)		
	3m	$1@ico_{f_3^1+v^1+e^1}^{1+3+6}$	tca	Mg	A6+M6 (M = Th)	12,12,12,16,1	21
				Mn	A6+M6 (M = Zr, Hf)	611	
				Mo	A6+M6 (M = Hf)		
				Ni	A6+M6 (M = Eu, Mg)		
				Zn	A6+M6 (M = Hf, Nb, Ta)		
P 6 ₃ /mmc				Ag, Au	A6+M6 (M = K)		
				Al	A6+M6 (M = Hf, Zr, Co)		
				Be	A6+M6 (M = Cr. Fe. Mn. Mo. Ru. V. W. Re)		
				Cd	A6+M6 (M = Ca. Yb)		
	$\overline{3}_{m}$	$1@ico_{c1}^{2+6}$	hex	Co	A6+M6 (M = Ta Nh Mg)	mgz-x	153
		$-f_3^++e^+$		Cr	A_{6+M6} (M = Nb Hf Ta Ti Zr)		100
					A6+M6 (M = Cd, Yh)		
				Fe	$A6\pm M6 (M - Er En Ho Ln Mo Th Tm$		
					$V_{\rm h}$ Uf Nh C ₂ T; W T ₂)		
				1	10, 11, 100, 50, 11, w, 1a)	1	

Продолжение таблицы П. 7

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Ir	A6+M6 (M = Mg)		
$ \begin{array}{ c c c c c c c } \hline P \ 6 \ 3m & 1 @ico_{l_1^{l_1+c_1}}^{2+6} & hex & Mn & A6+M6 (M = Ca) \\ Mg & A6+M6 (M = Ba, Ca, Dy, Er, Eu, Ho, Lu, Sr, Th, Tm, Y, Yb) \\ Mn & A6+M6 (M = Dy, Er, Gd, Hf, Ho, Lu, Pr, Ta, Tm, Tb, Y, Nd, Yb, Sc, Sm, Th, Zr) \\ Na & A6+M6 (M = Dx, Cs, K) \\ Ni & A6+M6 (M = Nb, U) \\ Os & A6+M6 (M = Nb, U) \\ Os & A6+M6 (M = Mn, Dy, Er, Gd, Hf, Ho, La, Lu, Nd, Tb, Tm, U, Yb, Pr, Pu, Sc, Sm, Y, Zr) \\ Pb & A6+M6 (M = Dy, Er, Eu, Gd, Hf, Ho, Nd, Np, Pr, Pu, Sc, Sm, Y, Zr) \\ Pb & A6+M6 (M = Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, U, Wy, Y, Sc, Zr) \\ Ru & A6+M6 (M = Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Y, Zr) \\ V & A6+M6 (M = Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Y, Zr) \\ V & A6+M6 (M = Dy, Er, Gd, Hf, Ho, Tc, Tb, Th, Tm, Y, Zr) \\ V & A6+M6 (M = Ca, Mg, Sc, Sr, Ta, Ti) \\ \hline 1@ico_{l_1^{l_1+D^+}}^{2+6} & hex & Mn & A9+M3 (M = Lu) \\ \hline P \ 5mc & 3m & 1@ico_{l_1^{l_1+c^+}}^{2+6} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline P \ 4mm & 1@ico_{l_1^{l_1+c^+}}^{3+6} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline P \ 4mm & 1@ico_{l_1^{l_1+c^+}}^{3+6} & hex & Sn & M12 (M = Nb) \\ \hline \end{array}$					К	A6+M6 (M = Cs)		
$ \begin{array}{ c c c c c c } \hline P \ 6_{3mc} & 3m & 1 \ 0 \ i \ c \ 0 \ 2^{+6}_{f_1^{+}+e^{1}} & hex & Hg & A6+M6 \ (M = Ba, Ca, Dy, Er, Eu, Ho, Lu, Sr, Tb, Tm, Y, Yb) \\ \hline Mn & A6+M6 \ (M = Dy, Er, Gd, Hf, Ho, Lu, Pr, Ta, Tm, Tb, Y, Nd, Yb, Sc, Sm, Th, Zr) \\ Na & A6+M6 \ (M = Ba, Cs, K) \\ Na & A6+M6 \ (M = Dy, Er, Gd, Hf, Ho, La, Lu, Nd, Sm, Tb, Tm, Yb, Sc, Y, Zr) \\ Tc & A6+M6 \ (M = Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Yb, Sc, Y, Zr) \\ Tc & A6+M6 \ (M = Ca, Mg, Sc, Sr, Ta, Ti) \\ \hline 1 \ 0 \ i \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$					Li, Pt	A6+M6 (M = Ca)		
$ \begin{array}{ c c c c c c } \hline P \ 6_{3mc} & 3m & 1@ico_{j_{1}^{2+6}}{0} & hex & Hg & A^{1} & A^{2+M6} (M = Lu) \\ \hline P \ 6_{3mc} & 3m & 1@ico_{j_{1}^{2+6}}{0} & hex & Hg & A^{2+M6} (M = Lu) \\ \hline P \ 6_{3mc} & 3m & 1@ico_{j_{1}^{2+6}}{0} & hex & Hg & A^{2+M6} (M = Lu) \\ \hline P \ 6_{3mc} & mmm & 1@ico_{j_{1}^{2+6}}{0} & bcu \cdot x & Sn & M12 (M = Nb) \\ \hline P \ 6_{3mc} & mmm & 1@ico_{j_{1}^{2+6}}{0} & bcu \cdot x & Sn & M12 (M = Nb) \\ \hline Mn & A^{6+M6} (M = Lu, Pr, F, H, F, H, H, Lu, Pr, Ta, Th, Th, Th, Th, Th, Th, Th, Th, Th, Th$					Mg	A6+M6 (M = Ba, Ca, Dy, Er, Eu, Ho, Lu, Sr,		
$ \begin{array}{ c c c c c c c c } \hline P \ 6smc & 3m & 1@ico_{f_{2}^{2+6}}{1} & hex & Mn & A6+M6 (M = Lu) \\ \hline P \ 6smc & 3m & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline P \ 4smc & mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline P \ 4smc & mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Mn & M12 (M = Nb) \\ \hline Mn & A6+M6 (M = Lu) & het & 1 \\ \hline Mn & A6+M6 (M = Lu) & het & 1 \\ \hline Mn & A6+M6 (M = Lu) & het & 1 \\ \hline Mn & A6+M6 (M = Lu) & het & 1 \\ \hline Mn & A6+M6 (M = Lu) & het & 1 \\ \hline Mn & A6+M6 (M = Lu) & het & 1 \\ \hline P \ 5smc & 3m & 1@ico_{f_{2}^{2+6}}{1@ico_{f_{2}^{2+6}}{1}} & hex & Hg & A6+M6 (M = Lu) \\ \hline P \ 5smc & 3m & 1@ico_{f_{2}^{2+6}}{1@ico_{f_{2}^{2+6}}{1}} & hex & Hg & A6+M6 (M = Lu) \\ \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1@ico_{f_{2}^{2+6}}{1}} & hex & Hg & A6+M6 (M = Lu) \\ \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1@ico_{f_{2}^{2+6}}{1}} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1@ico_{f_{2}^{2+6}}{1}} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline \hline P \ 5smc & mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline \hline \hline P \ 5smc \ mmm & 1@ico_{f_{2}^{2+6}}{1} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline $						Tb, Tm, Y, Yb)		
$ \begin{array}{ c c c c c c c c } \hline P \ 6_{3}mc & 3m & 1@ico_{f_{1}^{2+6}}^{2+6} & hex & Mn & A9+M3 (M = Lu) & mgz-x & 1 \\ \hline P \ 6_{3}mc & 3m & 1@ico_{f_{1}^{2+6}}^{2+6} & hex & Hg & A6+M6 (M = K, Rb) & 11,12,18T2 & 2 \\ \hline P \ 4_2/mmc & mmm & 1@ico_{f_{1}^{3+e}}^{2+6} & bcu-x & Sn & M12 (M = Nb) & bet & 1 \\ \hline Tmm Tr, Thomagana A & M12 (M = Nb) & bet & 1 \\ \hline Tmm Tr, Thom The The Transformation of transformation of the transformation of the transformation of the transformation of $					Mn	A6+M6 ($M = Dy, Er, Gd, Hf, Ho, Lu, Pr, Ta,$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Tm, Tb, Y, Nd, Yb, Sc, Sm, Th, Zr)		
$ \begin{array}{ c c c c c c c c } \hline P \ 6_{3mc} & 3m & 1@ico_{f_3^2+b^4}^{2+6} & hex & Mn & A6+M6 (M = K, Rb) \\ \hline P \ 5_{3m1} & 3m & 1@ico_{f_3^2+c_1}^{2+6} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline P \ 4_2/mmc & mmm & 1@ico_{f_3^{2+6}+c^1}^{2+6} & bcu-x & Sn & M12 (M = Nb) \\ \hline Ni & A6+M6 (M = Nb, U) \\ Os & A6+M6 (M = Nb, U) \\ Os & A6+M6 (M = Nb, U, Yb, Pr, Pu, Sc, Sm, Y, Zr) \\ Pb & A6+M6 (M = Dy, Er, Eu, Gd, Hf, Ho, Nd, Np, Pr, Pu, Sm, Tb, Th, Tm, U, W, Y, Sc, Zr) \\ Ru & A6+M6 (M = Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Yb, Sc, Y, Zr) \\ Tc & A6+M6 (M = Dy, Er, Gd, Hf, Ho, Tc, Tb, Th, Tm, Y, Zr) \\ V & A6+M6 (M = Dy, Er, Gd, Hf, Ho, Tc, Tb, Th, Tm, Y, Zr) \\ \hline P \ 5_{3m1} & 3m & 1@ico_{f_3^2+b^4}^{2+6} & hex & Hg & A6+M6 (M = K, Rb) \\ \hline P \ 4_2/mmc & mmm & 1@ico_{f_3^{2+6}+c^1}^{2+6} & bcu-x & Sn & M12 (M = Nb) \\ \hline \end{array}$					Na	A6+M6 (M = Ba, Cs, K)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Ni	A6+M6 (M = Nb, U)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Os	A6+M6 ($M = Am$, Dy, Er, Gd, Hf, Ho, La,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Lu, Nd, Tb, Tm, U, Yb, Pr, Pu, Sc, Sm, Y,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Zr)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Pb	A6+M6 (M = K)		
$ \begin{array}{ c c c c c c c c } \hline P \ 6_{3mc} & 3m & 1@ico_{j_1^2+e^1}^{2+6} & hex & Hg & A6+M6 \ (M=K, Rb) & 11,12,18T2 & 2 \\ \hline P \ 4_2/mmc & mmm & 1@ico_{j_1^3+e^1}^{2+6} & bcu-x & Sn & M12 \ (M=Nb) & bet & 1 \\ \hline \end{array} \right. \begin{array}{ c c c c c c c c c c c c } \hline Np, Pr, Pu, Sm, Tb, Th, Tm, U, W, Y, Sc, Zr) & A6+M6 \ (M=Dy, Er, Ho, Lu, Nd, Sm, Tb, Tm, Yb, Sc, Y, Zr) & A6+M6 \ (M=Dy, Er, Gd, Hf, Ho, Tc, Tb, Th, Tm, Y, Zr) & V & A6+M6 \ (M=Cu, Rh) & A6+M6 \ (M=Cu, Rh) & 3-nodal net; & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $					Re	A6+M6 ($M = Dy, Er, Eu, Gd, Hf, Ho, Nd,$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Np, Pr, Pu, Sm, Tb, Th, Tm, U, W, Y, Sc, Zr)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Ru	A6+M6 (M = Dy, Er, Ho, Lu, Nd, Sm, Tb,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Tm, Yb, Sc, Y, Zr)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Тс	A6+M6 (M = Dy, Er, Gd, Hf, Ho, Tc, Tb, Th,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Tm, Y, Zr)		
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $					V	A6+M6 (M = Zr)		
$1@ico_{f_3^1+b^4}^{2+6}$ hexAlA6+M6 (M = Cu, Rh)3-nodal net; 9,12,12-coor- dinated2P 6_3mc $3m$ $1@ico_{f_3^1+e^1}^{2+6}$ hexMnA9+M3 (M = Lu)mgz-x1P $\overline{3}m1$ $\overline{3}m$ $1@ico_{b^{12}+e^1}^{2+6}$ hexHgA6+M6 (M = K, Rb)11,12,18T22P 4_2 /mmcmmm $1@ico_{f_3^1+e^1}^{8+6}$ bcu-xSnM12 (M = Nb)bet1					Zn	A6+M6 ($M = Ca, Mg, Sc, Sr, Ta, Ti$)		
P 63mc3m $1@ico_{f_3^1+e^1}^{2+6}$ hexMnA9+M3 (M = Lu)9,12,12-coordinatedP 53m1 $\overline{3m}$ $1@ico_{f_3^1+e^1}^{2+6}$ hexMnA9+M3 (M = Lu)mgz-x1P $\overline{3m1}$ $\overline{3m}$ $1@ico_{b^{12}+e^1}^{2+6}$ hexHgA6+M6 (M = K, Rb)11,12,18T22P 4_2 /mmcmmm $1@ico_{f_3^1+e^1}^{3+e^1}$ bcu-xSnM12 (M = Nb)bet1			$1@ico^{2+6}_{1}$	hex	Al	A6+M6 (M = Cu, Rh)	3-nodal net;	2
Image: Market			$f_{3}^{1}+b^{4}$				9,12,12-coor-	
P 6_3mc $3m$ $1@ico_{f_3^1+e^1}^{2+6}$ hexMnA9+M3 (M = Lu)mgz-x1P $\overline{3}m1$ $\overline{3}m$ $1@ico_{b^{12}+e^1}^{2+6}$ hexHgA6+M6 (M = K, Rb)11,12,18T22P 4_2 /mmcmmm $1@ico_{f_3^1+e^1}^{3+e^1}$ bcu-xSnM12 (M = Nb)bet1							dinated	
P $\overline{3}m1$ $\overline{3}m$ $1@ico_{b^{12}+e^1}^{2+6}$ hexHgA6+M6 (M = K, Rb)11,12,18T22P 4_2 /mmcmmm $1@ico_{f_3^1+e^1}^{8+6}$ bcu-xSnM12 (M = Nb)bet1	P 6 ₃ mc	3m	$1@ico_{f_1^1+e^1}^{2+6}$	hex	Mn	A9+M3 (M = Lu)	mgz-x	1
P 4 ₂ /mmc mmm $1@ico_{f_3^1+e^1}^{8+6}$ bcu-x Sn M12 (M = Nb) bet 1	P 3m1	$\overline{3}m$	$1@ico_{h^{12}+e^1}^{2+6}$	hex	Hg	A6+M6 (M = K, Rb)	11,12,18T2	2
	P 4 ₂ /mmc	mmm	$1@ico^{8+6}_{f_1^3+e^1}$	bcu-x	Sn	M12 (M = Nb)	bet	1

Продолжение таблицы П. 7

C mcm	m2m	$1@ico_{f_3^1+e^1}^{2+6}$	hex	Re	A6+M6 (M = U)	mgz-x	1
C IIICIII	mm2	$1@ico_{v^{1}+e^{1}}^{4+2}$	hxl	Ag	A8+M4 (M = Ca, Yb)	12,12,12,16T1	2
Damo		$1@ico_{f_3^1+e^1+v^1}^{2+2+4}$	hex	Cu	A9+M3 (M = Ce, La, Pr, Pu, Sm, Th, Nd)	12,12,12,13,14 ,19T1	7
	m	$1@ico_{e^1+b^7}^{2+2}$	dia	Cu	A9+M3 (M = Hf) A7+M5 (M = Zr)	11,12,12,12,12 ,13,13,14T1	2
P 2 ₁ /c	1	$1@ico_{f_3^1+e^1+v^1}^{2+2+4}$	hex	Cu	A9+M3 (M = Ce, La, Pr, Nd)	12,12,12,13,14 ,19T1	4
C 2/m	m	$1@ico_{v^{1}+e^{1}}^{4+2}$	hxl	Co Ni	A8+M4 (M = Hf) A8+M4 (M = Zr)	6-nodal net; 12,12,12,13,15 ,16-coordi- nated	2
P 6 ₃ /mmc	<u>3</u> m	$0@ico^{2+6}_{f^1_3+e^1}$	hex	0	$ \begin{array}{l} M1_{6} + M2_{6} \ (M1 = Al, \ M2 = Er, \ Lu, \ U) \\ M1_{6} + M2_{6} \ (M1 = Co, \ M2 = U) \\ M1_{6} + M2_{6} \ (M1 = Be, \ M2 = V, \ W) \end{array} $	2-nodal net; 10,13-coordi- nated	7
P 4 ₂ /mnm	mmm	$0@ico_{e^1+b^4+b^1}^{2+8+4}$	bcu-x	0	$M1_8+M2_4$ (M1 = Nb, M2 = Al)	3-nodal net; 8,9,11-coordi- nated	1

Продолжение таблицы П. 7

Химический состав 90 упорядоченных тернарных интерметаллидов

Пр. группа	Точеч- ная группа	Суперкластер	Базовая сетка	II.A. (A) Cdepa (M) $A1$ $M1 + M2 + M1 = Ni + M2 = N + Sm + Cd + Div $		Топология структуры	Кол-во структур
I m3m	<u>3</u> m	$1@I_{f_3^1}^6$	рси	Al Ga	$ \begin{array}{l} M1_{6}+M2_{6}(M1=Ni,M2=Y,Sm,Gd,Dy,\\ Ho,Er,Tb)\\ M1_{6}+M2_{6}(M1=Ni,M2=Y,Sm,Gd,Dy,\\ Ho,Er,Tb,Tm,Pr,Nd) \end{array} $	12,12,16T1	17
F d∃m	3m	$1@I_{f_3^1}^6$	crs	Ag Al Au Ge Mn Ti Zn	$ \begin{array}{l} M1_{6}+M2_{6}(M1=Na,M2=In) \\ M1_{6}+M2_{6}(M1=Mg,Hf,Zr,M2=Ni,Au, \\ Pt) \\ M1_{6}+M2_{6}(M1=Na,M2=In) \\ M1_{6}+M2_{6}(M1=Ni,M2=Zn) \\ M1_{6}+M2_{6}(M1=Mg,M2=Ni) \\ M1_{6}+M2_{6}(M1=Mg,M2=Ni) \\ M1_{6}+M2_{6}(M1=Cu,M2=Hf,Zr) \end{array} $	12,12,14T1	12
F 43m	3m	$1@I_{f_3^1}^6$	crs	Dy Er Gd Ho Tm Tb	$\begin{array}{l} A_{6}+M1_{3}+M2_{3}(M1=Cd,In,M2=Rh)\\ A_{6}+M1_{3}+M2_{3}(M1=In,M2=Rh,Ir)\\ A_{6}+M1_{3}+M2_{3}(M1=Cd,In,M2=Rh,Ni,\\ Pd,Ir,Pt)\\ A_{6}+M1_{3}+M2_{3}(M1=Cd,In,M2=Rh,Ir,\\ Pt)\\ A_{6}+M1_{3}+M2_{3}(M1=In,M2=Rh)\\ A_{6}+M1_{3}+M2_{3}(M1=In,Cd,M2=Ir,Rh) \end{array}$	9,12,12,14,14T 1	17
P 2 ₁ 3	3	$1@I_{f_3^1+v^1}^{6+6}$	fcu	Au Ga Ge Ir	$ \begin{array}{l} M1_{9}+M2_{3} (M1=Cu, Nb, Ta, V, M2=Sn, \\ Ga) \\ M1_{9}+M2_{3} (M1=Nb, Ta, V, M2=Au) \\ M1_{9}+M2_{3} (M1=Mn, M2=Ir) \\ M1_{9}+M2_{3} (M1=Mn, M2=Ge) \end{array} $	12,14T1	5

				Sn	$M_{19}+M_{23}(M_1 = Cu, M_2 = Au)$		
Р 6 ₃ /ттс	$1@I_{f_3^{1+e^1}}^{2+6}$ $1mc$ $\bar{3}m$	hex	Al Co Ga Ge Ir Os Ru Li	$ \begin{array}{l} M1_{6}+M2_{6}(M1=Co,M2=U)\\ M1_{6}+M2_{6}(M1=Al,M2=Lu,Er)\\ M1_{6}+M2_{6}(M1=Fe,M2=U,Zr)\\ M1_{6}+M2_{6}(M1=Mn,Ti,Fe,Co,M2=Co,\\ Zr,U,Cu)\\ M1_{6}+M2_{6}(M1=Ga,M2=Eu)\\ M1_{6}+M2_{6}(M1=Al,M2=U)\\ M1_{6}+M2_{6}(M1=Al,V,M2=Sc,Zr)\\ M1_{6}+M2_{6}(M1=Na,M2=Au) \end{array} $	mgz-x	18	
		$1 @ I^{6+2}$		Ge	$M1_6+M2_6 (M1 = V, M2 = Hf)$	12,12,15T2	1
		$f_{3}^{2}+f_{3}^{1}$		Ge	$M1_6+M2_6 (M1 = Ni, M2 = Sr)$	10,12,20T1	1
P 63mc	3m	$1@I_{f_3^1+e^1}^{2+6}$	hex	Cu	$A_6 + M1_3 + M2_3 (M1 = Mn, M2 = In)$	mgz-x	1
R 3 <i>m</i>	$\overline{3}m$	$1@I_{f_3^2+e^1}^{6+6}$	fcu	Ga	$M1_6+M2_6 (M1 = Cu, M2 = Sr, Ba)$	10,12,20T2	2
P 42/ncm	2/m	$1@I_{v^1}^{12}$	fcu	Mg	$A_8+M1_2+M2_2$ (M1 = Ru, M2 = Ce)	10,12,15,16T1	1
C mcm	2/m	$1@I_{f_3^1+e^1}^{2+6}$	hex	Ga	$A_4+M1_6+M2_2$ (M1 = Mg, M2 = Mn)	mgz-x	1
C mcm	2/m	$1@I_{f_3^1+e^1}^{2+2}$	sql	Na	$M1_6+M2_6$ (M1 = Cs, M2 = Pb)	10,12,12,14,18 T1	1
		12+2		Fe	$A_3+M1_5+M2_4$ (M1 = Zr, M2 = Sn)	11,12,12,12,12 ,13,13,14T1	1
P nma m	m	$1@I_{e^1+b^7}^{2+2}$	dia	Fe Mn	$\begin{array}{l} A+M1_{5}+M2_{6} (M1 = Sc, M2 = Ga) \\ A+M1_{5}+M2_{6} (M1 = Sc, M2 = Ga) \end{array}$	11,12,12,12,12 ,13,16,17T1	2
		$1@I_{f_3^1+e^1+v^1}^{2+2+4}$	hex	Cu	$A_7+M1_2+M2_3$ (M1 = In, Sn, Ag, Au, M2 = Ce, U, Th)	12,12,12,13,14 ,19T1	8

Продолжение таблицы П. 8

Продолжение таблицы П. 8

				Fe Ni	$\begin{array}{l} A_{7}+M1_{2}+M2_{3}(M1=Sn,M2=U)\\ A_{7}+M1_{2}+M2_{3}(M1=Sn,M2=Lu) \end{array}$		
P mmn	mm2	$1@I_{f_3^2}^6$	hxl	Ge	$M1_6+M2_6$ (M1 = Ni, M2 = Ba)	10,12,20T3	1
C 2/m	2/m	$1@I_{f_3^2+e^1}^{2+4}$	hxl	In	$A_2+M1_4+M2_6$ (M1 = Rh, M2 = Sr)	10,12,12,17T1	1

Распределение 281 додекаэдрических (D20) и 5549 икосаэдрических (I12) конфигураций в интерметаллидах по точечным группам симметрии

Точечная группа	Число конфигураций D20	Число конфигураций 112
$m\overline{3}$ (T _h)	73	496
mmm (D _{2h})	27	184
$\overline{3}m$ (D _{3d})	36	1830
<i>3m</i> (C _{3v})	32	336
2/m (C _{2h})	42	648
<i>m</i> (C _s)	21	656
3 (C ₃)	15	31
23 (T)	7	2
3 (C _{3i})	10	7
$\overline{1}(C_i)$	5	54
1 (C ₁)	5	212
<i>mm</i> 2 (C _{2v})	5	1027
32 (D ₃)	1	4
2 (C ₂)	2	61

Основные структурные данные интерметаллидов с оболочками в виде дельтаэдров D32, D42 и D50

Соодина	Пространственная	Индона Пираона	Последовательность	Параметры	Объем,
Соединение	группа	индекс пирсона	Уайкоффа	ячейки <i>а, с,</i> Å	Å ³
		Структуры с оболочка	ими D32	·	
K ₈ In ₆ Ge ₄₀	Pm3	<i>cP</i> 54	kidca	10.977	1322.67
$Cs_{30}Na_3Sn_{162}$	P4 ₂ /mnm	<i>tP</i> 206	$k^6 j^4 i^7 g^2 f^2 db$	23.556, 12.104	6716.67
	I	Структуры с оболочка	ами D42		
Ru ₃ Be ₁₇	Im3	<i>cI</i> 160	hg ³ fed	11.337	1457.12
Y ₃ Cd ₁₈	Im3	<i>cI</i> 162	hg ⁴ fed	15.482	3710.92
YbCd ₆	123	<i>cI</i> 158	$f^{5}dc^{3}$	15.638	3824.23
Ca ₃ Cd ₁₇ Al	R3	hR168	$b^{54}a^{6}$	22.134, 27.108	11501.33
		Структуры с оболочка	ими D50		
Yb ₃ Zn ₁₈	Im3	<i>cI</i> 194	hg ⁴ fedca	14.299	2923.6
$Ce_3(Au_{14}Sn_3)$	123	<i>cI</i> 159	$f^5 edc^3$	15.118	3455.28
Pr ₃ Cd ₁₈	Im3	<i>cI</i> 258	$h^2g^4f^2edc$	15.643	3827.90
Eu ₄ Cd ₂₅	$Fd\overline{3}$	<i>cF</i> 1516	$g^{12}fe^6c$	31.872	32375.74

Геометрические и топологические характеристики дельтаэдров D32, D42, D50 в кристаллических структурах

Соединение	Тип дельтаэдра	Пространственная группа	Позиция	Точечная симметрия	КЧ атомов в оболочке
K ₈ In ₆ Ge ₄₀	D32	$Pm\overline{3}$	2a	$m\overline{3}$	5,6
Cs ₃₀ Na ₃ Sn ₁₆₂	D32	P4 ₂ /mnm	2b	mnm	5,6
Ru ₃ Be ₁₇	D42	Im3	2a	$m\overline{3}$	5,6
Y ₃ Cd ₁₈	D42	Im3	2a	$m\overline{3}$	5,6
YbCd ₆	D42	123	2a	$m\overline{3}$	5,6
Ca ₃ (Cd ₁₇ Al)	D42	R3	За	3	5,6
Yb ₃ Zn ₁₈	<i>D</i> 50	Im3	2a	$m\overline{3}$	5, 6, 7
$Ce_3(Au_{14}Sn_3)$	<i>D</i> 50	123	2a	23	5, 6, 7
Pr ₃ Cd ₁₈	<i>D</i> 50	Im3	2a	$m\overline{3}$	5, 6, 7
Eu ₄ Cd ₂₅	<i>D</i> 50	Fd3	8a	23	5, 6, 7

Координационные последовательности атомов в структурах с дельтаэдрами D32, D42 и D50

ATOM		Ко	ординац	ионные	последо	вательн	юсти				
AIUM	N_{I}	N_2	N_3	N_4	N_5	N_6	N_7	N_8			
		I	k	K8In6Ge4)	I					
K1	20	32	152	230	344	560	818	992			
K2	24	38	160	278	324	658	824	946			
Ge1	8	68	98	254	410	497	827	1067			
Ge2	8	67	103	246	421	509	799	1091			
In1	8	70	92	250	414	452	846	1058			
YbCd ₆											
Cd1	12	47	112	194	321	478	642	858			
Cd2	12	47	112	194	321	478	642	858			
Cd3	12	47	109	197	320	482	637	840			
Cd4	10	51	107	189	328	460	633	854			
Cd5	12	45	92	207	308	462	665	836			
Cd6	15	45	107	195	324	465	661	853			
Cd7	10	52	109	193	320	466	650	853			
Cd8	10	52	109	193	320	466	650	853			
Yb1	16	47	109	208	316	467	648	861			
Cd-	20	42	114	224	314	476	654	854			
тетраэдр											
				Yb ₃ Zn ₁₈							
Zn2	15	49	111	203	340	481	689	913			
Zn3	13	49	116	205	334	502	677	896			
Zn4	10	53	113	197	344	490	667	890			
Zn5	12	49	115	203	336	504	667	884			

Zn6	11	53	116	206	332	497	689	896
Zn7	12	49	96	211	332	470	705	884
Zn8	8	38	110	188	308	464	674	848
Yb1	16	49	113	220	330	491	678	907
Yb2	20	50	112	224	362	500	686	950

156 Продолжение таблицы П. 12

Распределение типов локального связывания кластеров Бергмана по 9 топологическим типам базовых сеток

Формула		Базовая сетка Прототип		Количество структур
$1@ico@D32^{8+6}_{f_3^6+f_3^2}$		bcu-x	K _{1.5} Na. ₃₉₆ Tl ₆ Cd _{.3137} , Rb ₃ Hg ₂₀	10
$1@ico@D32_{f_3^2+f_3^6+e^1}^{6+2+6}$		bcu-x	Cr ₅ Al ₈	16
$1@ico@D32_{v^1}^{12}$		fcu	$Cu_{12}K_{12}Sn_{21}$	2
$1@ico@D32^{12}_{f_3^2}$		fcu	Na ₃ K ₈ Tl1 ₃	1
$1@ico@D32^{4+4+4}_{f_3^2+b^1+b^2}$		gsp1	Li ₅ Ca ₁₈ In _{25.07}	1
1@ico@D32 ⁸ _{b1}		bcu	Ho ₁₆ Mg ₂₄ Zn ₁₂₂ , K ₂₉ NaHg ₄₈ Mg ₃₂ (Ag ₁₃ Al ₃₆)	15
$1@ico@D32^{6+2}_{f_3^2+f_3^5}$		hex	Sm ₁₂ Fe ₁₄ Al ₅	1
$1@ico@D32_{f_3^2}^6$		рси	Na ₂ Au ₆ In ₅	14

1@ico@D32 _{mol}	8008008	mol	Li _{33.3} Ba _{13.08} Ca _{2.96}	2
$0@ico@D32^{2+8}_{f_8^2+b^{10}}$	88	bct	Na ₁₀ Ga ₆ Sn ₃	1
$0@ico@D32^8_{b^1}$		bcu	$\begin{array}{l} K_{49}Tl_{108},K_{3}Na_{26}In_{48},\\ Al_{88.7}Cu_{19.3}Li_{52},\\ Ga_{22.13}Li_{11.33}Zn_{2.66} \end{array}$	36
0@ico@D32 ⁶ _{b²}		hxl	Na ₇ Ga ₁₃	1
$0@ico@D32^2_{b^1}$	O O	chain	Na ₁₆ Zn _{13.54} Sn _{13.46}	1
0@ico@D32 _{mol}		mol	$\begin{array}{l} Ga_{19.56}Li_3Na_5, K_{34}In_{89.95}Zn_{13.05},\\ (Cu_6Ga_{46.5})Na_{17}, Na_{128}Au_{81}Ga_{275},\\ Au_{115.29}Ca_{24}Sn_{34.81}, K_{39}In_{80},\\ K_{34}In_{91.05}Mg_{13.95}, CaCd_6,\\ Li_{33.3}Ba_{13.08}Ca_{2.9},\\ K_{14}Na_{21}Cd_{17}Ga_{82}, \end{array}$	36
$1@ico@D32@D98^{12}_{e^1}$		fcu		2
$0@ico@D32@D110^{8+6}_{f_3^{14}+f_3^2}$		bcu-x	Au115.29Ca24Sn34.81	1
$0@ico@D32@D102^{8+6}_{f_3^{14}+f_3^2}$		bcu-x	CaCd ₆	17

Продолжение таблицы П. 13

$0@ico@D32@D80^{6+6}_{b^{40}+v^2}$		fcu	$\begin{array}{l} (Cu_{6}Ga_{46.5})Na_{17},\\ K_{14}Na_{21}Cd_{17}Ga_{82},\\ K_{34}In_{89.95}Zn_{13.05},\\ K_{34}In_{91.05}Mg_{13.95} \end{array}$	15
$0@ico@D32@D92^6_{v^1+e^4}$	ಂಕ್ಷಣ	рси	$K_{49}Tl_{108}$	1
0@ico@D32@D98 ⁶ _{f3} ⁶		hxl	$K_{39}In_{80}, K_{34}In_{89.95}Zn_{13.05}$	5
0@ico@D32@D80 ⁶ _{b⁴⁰}		hxl	(Cu ₆ Ga _{46.5})Na ₁₇	9
$0@ico@D32@D80^{4+2}_{b^{40}+v^2}$		hxl	$Na_{128}Au_{81}Ga_{275},$	1

Нанокластерные модели 37 топологических типов интерметаллидов, построенных их кластеров у-латуни

Пр. группа	Позиции Уайкоффа	Количество соединений	Топологический прототип	Нано	окластерная модель	Базовая сетка
F-43m (216)	h ⁷ gfe ⁶ db	1	Li ₁₃ Na ₂₉ Ba ₁₉	0@4@22 + 0@4@22 +2Friauf + Icosa	0@Li4@Li22 + 0@Na4@Na6Ba16 + Ba@Ba4Na12 + Ba@Ba4Na12 + Na@Na6Ba6	bcu
F-43m (216)	$h^4g^2f^2e^8$	14	Cu _{40.5} Sn ₁₁	$\begin{array}{c} 0@4@22+0@4@22\\ +0@4@22+0@4@22 \end{array}$	0@Cu4@Cu16Sn6 + 0@Cu4@Cu10Sn12 + 0@Cu4@Cu22+ 0@Cu4@Cu18Sn4	bcu-x
F-43m (216)	$h^5 g f^2 e^6$	12	Na ₆ Tl	$\begin{array}{c} 0@6@28 + 0@4@22 + \\ 0@4@22 + 0@4@24 \end{array}$	0@Na4@Na24 + 0@Na4@Na18Tl4 + 0@Na4@Na16Tl6 + 0@Na6@Tl4Na24	bcu-x
F-43m (216)	$h^4g^2f^2e^8d$	5	Li ₁₇ Ge ₄	$\begin{array}{r} 0@4@22 + 0@4@22 + \\ 0@4@34 + 1@14@50 \end{array}$	0@Li4@Li16Ge6 + 0@Li4@Li16Ge6 + 0@Li4Ge6Li24 + Li@Li10Ge4@Ge10Li40	bcu-x
F-43m (216)	$h^4g^2f^2e^7$	3	Al _{7.56} Pd _{18.0} Zn _{74.44}	$\begin{array}{c} 0@4@22+0@4@22+\\ 0@4@22+0@4@30 \end{array}$	$\begin{array}{l} 0@Zn4@Pd4Zn18 + 0@Zn4@Pd4Zn18 \\ + 0@Zn4@Pd4Zn18 + \\ 0@Al4@Pd6Zn24 \end{array}$	bcu-x
F-43m (216)	$h^2g^2fe^8$	2	Ce ₃ Ge _{10.72} Pt _{23.28}	$\begin{array}{c} 0@4@26+0@4@26+\\ 0@6@32+0@8@38 \end{array}$	0@Pt4@Pt16Ce6Ge4 + 0@Pt4@Ge8Ce6Pt12 + 0@Pt6@Ge4Pt28 + 0@Pt8@Ge14Pt24	bcu-x
F-43m (216)	$h^5 g f^2 e^6 d$	2	b-Al _{67.4} Cu _{14.3} Cr _{18.3}	$\begin{array}{c} 0@4@22+0@4@22+\\ 0@6@28+1@16 \end{array}$	0@Al4@Cr4Al18 + 0@Al4@Cr10Al12 + 0@Al6@Cr4Al24 + Cu@Cu12Al4	bcu-x
F-43m (216)	$h^4g^2f^2e^7b$	3	$Ir_{7+7d}Zn_{97-11d}$	$\begin{array}{c} 0@4@22+0@4@22+\\ 0@6@28+1@8@34 \end{array}$	$\begin{array}{c} 0@Zn4@Zn22 + 0@Zn4@Zn18Ir4 + \\ 0@Zn6@Ir4Zn24 + Zn@Zn8@Ir4Zn30 \end{array}$	bcu-x
F-43m (216)	$ih^5g^2fe^8b$	2	Ba ₁₆ Na ₂₀₄ Sn _{322.38}	$\begin{array}{c} 0@8@34 + 0@8@22 + \\ 0@4@20 + 1@16@30 + \\ 1 \end{array}$	0@Sn4Na4@Ba4Na18Sn12 + 0@Sn8@Na22 + 0@Sn4@Ba4Na4Sn12 + Na@Sn16@Na30 + Sn	bcu-x
F-43m (216)	$h^5 g f^2 e^6 da$	2	(FeNi)Zn _{12.7}	0@4@22 + 0@6@28 + 1@14@40 + Friauf	0@Zn4@Zn22 + 0@Zn6@Fe4Zn24 + Fe@Fe10Zn4@Zn40 + Zn@Zn16	bcu-x

Продолжение таблицы П. 14

F-43m (216)	ih4g2fe8a	1	Ce20Pd36In67	$\begin{array}{c} 0@4@26+0@4@22+\\ 0@4@26+1@16@50 \end{array}$	0@In4@Ce4In12Pd8+ 0@In4@Ce4In18 + 0@In4@Pd8Ce6In12 + In@Ce4In12@Ce10In12Pd28	bcu-x
F-43m (216)	gfe3	72	Gd4RhIn	0@4@22+1	0@In4@Gd22 + Rh	fcu
F-43m (216)	gfe2dc	1	Mn5Ni2Bi4	0@4@22+1+1	0@Mn4@Ni4Bi6Mn12 + 2Bi	fcu
F-43m (216)	h ⁵ gf ² e5d	6	Mg6Pd	0@4@22 + 0@6@40 + 0@6@28 + 1@16@46	0@Mg4@Mg18Pd4 + 0@Mg6@Mg36Pd4 + 0@Mg6@Mg24Pd4 + Mg@Mg16@Mg42Pd4	new
F-43m (216)	gfe ⁴ ba	5	Ti39Co26Al35	0@4@22+0@4@22+1 +1	0@Al4@Al4Co6Ti12 + 0@Al4Ti4@Al12Co10Ti12 + 2Co	new
F-43m (216)	h ⁶ gfe ⁶ dca	2	Al69Ta39	0@4@22 + 1@16@44 + Friauf + 1@14	0@Al4@Al6Ta16 + Ta@Al12Ta4@Al28Ta16 + Ta@Al12Ta4 + Ta@Al14	рси
F-43m (216)	ih ⁴ gf ² e ⁷ ca	1	Ce20Mg19Zn81	0@4@22 + 0@4@22@88 + Friauf + 1@8	$\begin{array}{c} 0 @ Zn4 @ Ce4Mg6Zn12 + \\ 0 @ Zn4 @ Zn4Mg12Ce6 @ Ce12Mg12Zn6 \\ 4 + Mg @ Ce4Zn12 + Zn @ Zn8 \end{array}$	sqc349
I-43m (217)	$h^2g^9fe^2c^4$	1	Pt64Cd326.4	0@4@22 + 1@12@47 + 0@10	0@Cd4@Cd18Pt4 + Cd@Cd9Pt3@Cd42Pt5 + 0@Pt4Cd6	8,11T3
I-43m (217)	gec ²	29	Cu5Zn8	0@4@22	0@Zn4@Cu10Zn12	bcu-x
I23 (197)	fdc ²	1	Ag2Hg3	0@4@22	0@Hg4@Ag10Hg12	bcu-x
Fm-3m (225)	$k^6 j i^2 h^2 g f^4 e^3 c$ a	1	Co5.2Ge11.2Pr11. 7	$\begin{array}{c} 0@6@34 + 0@8@26 + \\ 1@18@42 + 1@22 + 1 \end{array}$	0@Ge2Pr4@Co8Ge16Pr10 + 0@Co8@Co8Pr18 +	6,12,14T 1

					Pr@Co12Ge6@Ge18Pr24 + Pr@Co12Ge10 + Ge	
Fd-3m (227)	ihg6fe5cb	5	NaCd2	0@4@22 + 1@16@44 + Icosa + 1	0@Cd4@Na10Cd12 + Na@Cd16@Cd20Na24 + Cd@Cd6Na6 + Cd	crs-d
Fd-3m (227)	fec	79	Ti2Ni	0@4@22	0@Ni4@Ti22	dia-x
Fd-3m (227)	fedc	1	Zr ₄ Ni ₂ Al	0@4@22+1	0@Ni4@Zr22 + Al	dia-x
Fd-3m (227)	fedc	1	Mn ₃ Cu ₄ Bi ₄	0@8@26	0@Cu8@Bi14Mn12	fcu
Pn-3 (201)	h ⁵ gfe ³ b	1	Ce ₆ Cd ₃₇	0@8@38+1@8	0@Cd8@Cd32Ce6 + Cd@Cd8	fcu
Fm-3m (225)	f ² edba	5	Sc ₁₁ Ir ₄	0@4@22+1+1	0@Sc4@Sc4Ir6Sc12 + Ir + Ir	new
Pn-3m (224)	lk ⁴ ge ² db	2	$Cu_{12}K_{12}Sn_{21}$	0@8@30 + 0@6@48 + 1	0@K4Sn4@K6Cu12Sn12 + 0@K6@Cu6K12Sn30 + Sn	new
Fm-3m (225)	f ² edb	236	Th ₆ Mn ₂₃	0@4@22+1	0@Mn4@Mg10Th12 + Mn	pcu
Pm-3m (221)	jigdb	21	BaHg ₁₁	0@8@42+1	0@Hg8@Ba6Hg36 + Hg	pcu
Pm-3m (221)	gdcb	9	TmRuGa ₃	0@8@26	0@Ga8@Tm12Ga8Ru6	pcu
P-43m (215)	$i^2 g f e^4$	37	Cu ₉ Al ₄	0@4@22+0@4@22	0@Al4@Cu12 + 0@Cu4@Cu10Al12	bcu-x

0@Cd4@Cd18Pd4 + $i^2 g f e^4$ P-43m (215) 4 Pd8Cd43 0@4@22 + 0@4@22bcu-x 0@Cd4@Cd18Pd4 $i^2 g f e^3$ P-43m (215) Cd5Ni 0@4@22 + 0@6@280@Cd4@Cd22 + 0@Ni6@Cd24Ni4 3 bcu-x 0@4@22 + 0@4@22 +0@Sb4@Ba4Sb6Ti12 + i³hgfe⁴ P-43m (215) Ba5Ti12Sb19.10 1 bcu-x 1 + 10@Sb4@Ba4Sb18 + Ti + Bi $i^2 g f e^4$ P-43m (215) Ti8In5 0@4@22 + 0@8@340@In4@In4Ti18 + 0@Ti8@Ti6In28 1 bcu-x $i^2 g f e^3 a$ 0@4@22 + 1@10 0@Ga4@Ni4Zn18+ Ni@GaZn9 P-43m (215) 2 Ni8Zn36Ga5 pcu

Сравнительный анализ авторского и нанокластерного описания кристаллических структур интерметаллидов

Прототип	БДНС код	Кол-во структур	Авторское описание	Нанокластерная модель
Li ₁₃ Na ₂₉ Ba ₁₉	416631	1	$\gamma + 2$ Friauf Li26 + 2(BaBa4Na12) 4c ($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$)	$\begin{array}{c} \gamma + \gamma + Friauf + Friauf + Icosa \\ Na_{10}{}^{T,OH}Ba_{16}{}^{OT,CO} & Li_{26}{}^{T, OT, OH, CO} & Ba@Na12Ba4 \\ Ba@Na12Ba4 & Na@Ba6Na6 \\ 4a~(0,0,0) & 4c~({}^{1}\!$
Cu40.5 Sn11	130105	14	$\begin{array}{c} \gamma + \gamma + \gamma + \gamma \\ Cu_{21}^{\text{IT, OH, CO}}Sn_4^{\text{OT}} & Cu_{14}^{\text{IT, OT, OH}}Sn_{12}^{\text{CO}} & Cu_{26}^{\text{IT, OT, OH, CO}}\\ Cu_{22}^{\text{IT, OH, CO}}Sn_4^{\text{OT}} \\ 4a\left(0,0,0\right) & 4b\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) & 4c\left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right) & 4d\left(\frac{1}{4},\frac{1}{4},\frac{3}{4}\right) \end{array}$	Совпадает с авторской моделью

163

Na ₆ Tl	130049	12	4×Icosa + 12 (усеченный тетраэдр) 4a (0,0,0) -4	$\begin{array}{c} \gamma + \gamma + \text{Ti2Ni}@12 + \alpha-\text{Mn} (-\text{CC})\\ \text{Na20IT, OT, COTI6OH} & \text{Na21.6IT, OH, COTI6OH}\\ & 0@\text{Na6}@\text{Tl4Na24}\\ & 0@\text{Na4}@\text{Na24}\\ \text{4b} (\frac{1}{2},\frac{1}{2},\frac{1}{2}) & 4\text{c} (\frac{1}{4},\frac{1}{4},\frac{1}{4}) & 4\text{a} (0,0,0) & 4\text{d}(\frac{3}{4},\frac{3}{4},\frac{3}{4}) \end{array}$
Li17Ge4	450136	5	$Li4 + LiLi4 + Li4 + Li4a(0,0,0) 4b (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) 4c (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) 4d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4})$	$\begin{array}{c} \gamma + \gamma + \gamma @12 + BCC@38\\ Li22IT, OH, COGe4OT Li20IT, OT, COGe6OH\\ Li20IT, OT, COGe6OH@Li12 LiCC@(Li + Ge)8Li18OH, CO@Li28Ge10\\ 4a~(0,0,0)~~4c~(\frac{1}{2},\frac{1}{2},\frac{1}{2})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$
Al7.56Pd18.0Zn74.44	421283	3	$\begin{array}{c} \gamma + \gamma + \gamma + \gamma (\text{-OT}) \\ (Zn+Al)_4{}^{\text{IT}}\text{Pd}_4{}^{\text{OT}}\text{Zn}_{18}{}^{\text{OH},\text{CO}} \text{Pd}_4{}^{\text{OT}}\text{Zn}_{22}{}^{\text{IT},\text{OH},\text{CO}} \text{Pd}_4{}^{\text{OT}} \\ Zn_{22}{}^{\text{IT},\text{OH},\text{CO}} Al_4{}^{\text{IT}}\text{Pd}_6{}^{\text{OH}}(\text{Zn}+Al)_{12}{}^{\text{CO}} \\ 4a\ (0,0,0) 4b\ ({}^{1}\!$	$\begin{array}{c} \gamma + \gamma + \gamma + \gamma \ (\text{-OT}) @ 12 \\ Zn_{22}{}^{IT, \ OH, \ CO}Pd_4{}^{OT} \ Zn_{22}{}^{IT, \ OH, \ CO}Pd_4{}^{OT} \ (Al + Zn)_4{}^{IT}Zn_{18}{}^{OT,} \\ {}^{CO}Pd_6{}^{OH} \ Al_4{}^{IT} @Pd_6{}^{OH}(Zn + Al)_{12}{}^{CO} @ Zn12 \\ 4b \ (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \ 4c \ (\frac{1}{4}, \frac{1}{4} \ \frac{1}{4}) \ 4d \ (\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) \ 4a \ (0,0,0) \end{array}$
Ce ₃ Ge _{10.72} Pt _{23.28}	106400	2	Координационные полиэдры упакованы в два слоя: 0@4@26 + 0@4@26 + 0@6@32 + 0@8@38	$\begin{array}{c} \gamma @4 + \gamma @4 + \gamma (-CO) @32 + 0 @6@32 \\ Pt_{16}{}^{IT,\ CO}Ge_{4}{}^{OT}Ce_{6}{}^{OH} Pt_{4}{}^{IT}Ge_{4}{}^{OT}Ce_{6}{}^{OH}(Ge + Pt)_{12}{}^{CO} Pt_{8}{}^{IT}, \\ {}^{OT}Ge_{6}{}^{OH}@Ge8Pt12(Pt + Ge)12 \\ 0 @Pt6@Pt16(Pt + Ge)12 \\ 4a (0,0,0) \ 4b \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \ 4c \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \ 4d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) \end{array}$
β-Al _{67.4} Cu _{14.3} Cr _{18.3}	1253075	2	2 комплекса: (1@6 + Icosa) + (4×Icosa + Cu4) 4c ($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$) 4d($\frac{3}{4}, \frac{3}{4}, \frac{3}{4}$)	$\begin{array}{c} \gamma + \gamma + \text{Ti2Ni} @12 + 1@16 \\ \text{Al16IT, COCr10OT, OH} & (\text{Al} + \text{Cu})\text{4IT}(\text{Cr} + \\ \text{Cu})\text{4OTA118OH, CO} \\ & (\text{Al} + \text{Cu})\text{18OH, COCr4T} \\ \text{Cu0.28CC} @\text{Cu12Al4} \\ \text{4b} (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) & \text{4c} (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) & \text{4a} (0,0,0) & \text{4d}(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) \end{array}$
$Ir_{7+7d}Zn_{97-11d}$	1320440	3	$\begin{array}{rl} \gamma + bcu/\gamma + \alpha - Mn/\gamma + Ti2Ni \\ Ir4OTZn22 & Ir1 - \delta + mCC, OT, OHZn26 - m & Zn29 - 3\delta \\ Ir4OTZn18 \\ 4a(0,0,0) & 4c \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) & 4b \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) & 4d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) \end{array}$	$\begin{array}{c} \gamma + \gamma + bcu@16 + Ti2Ni@12\\ Ir4OTZn22 & (Zn+Ir)10OT, OHZn16IT, CO\\ Zn26@Ir4Zn12 & Ir4TZn18@Zn12\\ 4a(0,0,0) & 4c(\frac{1}{4},\frac{1}{4},\frac{1}{4}) & 4b(\frac{1}{2},\frac{1}{2},\frac{1}{2}) & 4d(\frac{3}{4},\frac{3}{4},\frac{3}{4}) \end{array}$

Ba ₁₆ Na ₂₀₄ Sn _{322.38}	240014	2	Na200([Ba4@Sn5636-][Na@Sn13.5]8-[Sn8]6-)4	$\begin{array}{c} & \gamma @16 + \gamma @4 + 0 @4 @20 + 1 @16 @30 \\ & Na4 + Sn4Na6OHSn12CO@Na12Ba4 \\ Sn6.7Sn18OH,CO@Na4 & 0@Sn4@Ba4Sn12Na4 \\ & Na@Sn12.8@Na30 \\ 4d(^3\!\!\!/_4, ^3\!\!\!/_4) & 4c(^1\!\!\!/_4, ^1\!\!\!/_4) & 4a(0,0,0) & 4b(^1\!\!\!/_2, ^1\!\!\!/_2, ^1\!\!\!/_2) \\ & \gamma @16 + \gamma @4 + 0@4@20 + 1@16@30 + 1 \\ & (Na4 + Sn4)Na6OHSn12CO@Na12Ba4 \\ Sn6.7Sn18OH,CO@Na4 & 0@Sn4@Sn12Ba8 \\ & Na@Sn12.5Na30 & Sn \\ 4d(^3\!\!\!/_4, ^3\!\!\!/_4) & 4c(^1\!\!\!/_4, ^1\!\!\!/_4) & 4a(0,0,0) & 4b(^1\!\!\!/_2, ^1\!\!\!/_2, ^1\!\!/_2) \\ & 96i(x,y,z) \end{array}$
(FeNi)Zn _{12.7}	106670	2	$\begin{array}{rl} \gamma + \alpha - Mn\gamma(-CC) + Ti2Ni + bcu/\gamma \\ Zn26 & Zn29 & (Ni,Fe)4TZn18 & (Fe,Ni)CC,IT,OHZn16 \\ 4c \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) & 4d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) & 4b \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) & 4a \left(0,0,0 \right) \end{array}$	$\begin{array}{c} \gamma + Friauf + Ti2Ni@12 + bcu@28\\ Zn26 & Zn@Zn16 & Zn18CO(Fe + Ni)4T@Zn12\\ (Fe + Ni)11CC, IT, OHZn16OT, CO@Zn24(Zn + Fe)4\\ 4c \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right) & 4d(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) & 4b \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right) & 4a (0,0,0) \end{array}$
Ce ₂₀ Pd ₃₆ In ₆₇	170690	1	Нет модели	$\begin{array}{c} \gamma + \gamma @4 + \gamma @4 + 1 @16 @50\\ \text{In22IT, OH, COCe4OT In16IT, COPd4OTCe6OH}\\ \text{In16IT, COPd4OTCe6OH}\\ \text{In@In16Ce4@Pd24In12Ce10}\\ \text{4c} (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \text{4b} (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \text{4d} (\frac{3}{4}, \frac{3}{4}, \frac{3}{4}) \text{4a} (0,0,0) \end{array}$
Gd4RhIn	417516	72	RhGd6треуголная призма + In4тетраэдр + Gd6октаэдр 16e (x,x,x), x = 0.14120 4b (½, ½, ½) 4a (0,0,0)	γ + спейсер In4ITGd22OT, OH, CO 4b (¹ / ₂ , ¹ / ₂ , ¹ / ₂)
$Mn_5Ni_2Bi_4$	AL7812	1	Нет модели	γ + спейсер Ni4OTBi6OHMn16IT, CO 4a (0,0,0)

165

Mg ₆ Pd	2750	6	94-атомный кластер + 16 (Mg, Pd) + 4 Mg 4a(0,0,0) -4 4d(³ / ₄ , ³ / ₄)	$\begin{array}{c} \gamma + Ti2Ni@24 + Ti2Ni@12 + 1@16@46\\ Mg22IT, OH, COPd4OT & Mg18OH, COPd4T@Mg24\\ Mg18OH, COPd4T@Mg12 & Mg0.97@Mg12(Mg + Pd)4@Mg42Pd4\\ 4c \left({}^{1}\!$
Ti ₃₉ Co ₂₆ Al ₃₅	1011195	5	Нет модели	$\gamma + \gamma + спейсер$ (Al + Ti)4ITAl4OTCo6OHTi12CO Al4ITTi16OT, COCo6OH 4d(³ / ₄ , ³ / ₄ ³ / ₄) 4c (¹ / ₄ , ¹ / ₄)
Al ₆₉ Ta ₃₉	106251	2	Фуллереноподобный кластер Al102Ta57 4d(¾, ¾ ¾)	$\gamma + 1@16@44 + спейсер$ Ta16IT, COAl10OT, OH Ta@Al12Ta4@Al28Ta16 4b ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) 4a (0,0,0)
Ce ₂₀ Mg ₁₉ Zn ₈₁	260004	1	$bcu + Friauf(+CC)@28 + Ti2Ni + \gamma$ ZnCCZn8Ce6OHZn12CO MgCCZn12Ce4@Zn24Ce4 Zn16T,COMg6OH Zn8IT,OTMg12COCe6OH 4a (0,0,0) 4c (¹ / ₄ , ¹ / ₄ , ¹ / ₄) 4b (¹ / ₂ , ¹ / ₂) 4d(³ / ₄ , ³ / ₄)	$\begin{array}{c} \gamma + \gamma @88 + Friauf + 1 @8 \\ Zn16IT, COCe4OTMg6OH Zn8IT, \\ OTCe6OHMg12CO@ Ce12Mg12Zn64 Mg@Zn12Ce4 \\ Zn@Zn8 \\ 4b (\frac{1}{2}, \frac{1}{2}, \frac$
Pt ₆₄ Cd _{326.4}	AL7536	1	$\begin{array}{c} \gamma + \gamma + \gamma(\text{-IT}) \\ \text{Cd21.2IT, OH, COPt4OT} + \text{Cd22IT, OH, COPt4OT} + \\ \text{Pt4OTCd18OH, CO} \\ 2a~(0,0,0) & 8c~(^{1}\!$	$\begin{array}{c} \gamma \ + \ 1 @ \ 12 @ \ 47 \ + \ 0 @ \ 10 \\ Cd21.2IT, \ OH, \ COPt \ 4OT \ Cd @ \ Cd9Pt \ 3 @ \ Cd \ 42Pt \ 5 \\ Pt \ 4OT \ Cd \ 6OH \\ 2a \ (0,0,0) \ 8c \ (x,x,x), \ x = 0.29900 \ 6b \ (0, \ \frac{1}{2}, \ \frac{1}{2}) \end{array}$
Cu ₅ Zn ₈	137434	29	γ Zn16IT, COCu10OT, OH 2a (0,0,0)	Совпадает с авторской моделью

Ag ₂ Hg ₃	137491	1	Нет модели	γ Hg15.1IT, COAg10OT, OH 2a (0,0,0)
Co _{5.2} Ge _{11.2} Pr _{11.7}	623560	1	Нет модели	$\begin{array}{c} \gamma @ 8 + 0 @ 6 @ 34 + 1 @ 18 @ 42 + 1 @ 22 + 1 \\ \text{Co8Pr18OH, CO} & 0 @ \text{Ge2Pr4} @ \text{Co8Ge16Pr10} \\ \text{Pr} @ \text{Co12Ge6} @ \text{Ge18Pr24} & \text{Pr} @ \text{Co12Ge10} & \text{Ge} \\ \text{4b} (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) & 24d (0, \frac{1}{4}, \frac{1}{4}) & 4a (0,0,0) & 8c (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \end{array}$
NaCd ₂	102030	5	234-атомный кластер 8a(0,0,0)	$\begin{array}{c} \gamma + 1@16@44 + Icosa + 1 \\ Cd16IT, CONa100T, OH & (Na + Cd)CC@(Na + Cd)16@(Na + Cd)40Cd2 & Cd@(Na + Cd)8Cd4 & Cd \\ 8a(1/8, 1/8, 1/8) & 8b(3/8, 3/8, 3/8) & 96h(0,y,-y) & 16c \\ & (0,0,0) \end{array}$
Ti2Ni	646962	79	Ti2Ni Ti18OH, CONi4T 8b (3/8, 3/8, 3/8) Ti2Ni + γ Ti18OH, CONi4T Ni4ITTi22OT, OH, CO 8b (3/8, 3/8, 3/8) 8a (1/8, 1/8, 1/8)	γ Ni4ITTi22OT, OH, CO 8a (1/8, 1/8, 1/8)
Zr4Ni2Al	164058	1	Zr6октаэдр + Ni4тетраэдр + (Zr, Al) + (Zr, Ni)	γ+ спейсер Ni4ITZr22 8a (1/8, 1/8, 1/8)
Mn3Cu4Bi4	AL7813	3	Нет модели	γ@8 Cu8Bi6OHMn12CO@Bi8 4a (0,0,0)

Ce ₆ Cd ₃₇	451560	1	Ce12Cd138 Cd4TCd20додекаэдрCe12Icosa Cd30икосододека- эдрCd(80-8) + 12 4a(0,0,0) or 4b (½,½, ½)	$\gamma@20$ + спейсер Ce6OHCd20IT, OT, CO@Cd18.7 4c ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)
Sc ₁₁ Ir ₄	AL7406	5	γ + спейсер Sc20IT, OT, COIr6OH + Ir + Ir 8c (¹ / ₄ , ¹ / ₄ ¹ / ₄) 4a (0,0,0) 4b (¹ / ₂ , ¹ / ₂ , ¹ / ₂)	Совпадает с авторской моделью
Cu ₁₂ K ₁₂ Sn ₂₁	262228	2	[1@12@20]12- Sn@Cu12@Sn20 4b (0,0,0)	$\gamma@12 + 0@6@48 + спейсер$ K10IT, OHSn16OT, CO@Cu12 0@K6@K12Cu6Sn30 Sn0.67 2a ($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$) 4c ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)
Th ₆ Mn ₂₃	AL4013	236	Нет модели	γ + спейсер Mn14IT, OT, OHMn12CO 8c (¼, ¼ ¼)
BaHg11	184071	21	НgCCHg12CO + Hg4квадрат + Hg8 1b (½, ½, ½) 3c (0,½ ½) 1a (0,0,0)	γ@24 + спейсер Ba6OHHg8Hg12CO@Hg24 1a (0,0,0)
TmRuGa ₃	2756	9	$Ga8 + Tm + Ru$ 1a (0,0,0) 3c (0, $\frac{1}{2}$, $\frac{1}{2}$) 3d ($\frac{1}{2}$, 0,0)	γ@8 Ga8Ru6OHTm12CO@Ga8 1a (0,0,0)

Cu9Al4	AL6992	37	Al4ITCu26OT, OH, CO Cu14IT,OT, OHAl12CO 1a (0,0,0) 1b $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$	Совпадает с авторской моделью
Pd ₈ Cd ₄₃	AL7534	4	$\gamma + \gamma$ Cd21IT, OH, COPd4OT Cd22IT, OH, COPd4OT 1a (0,0,0) 1b ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)	Совпадает с авторской моделью
Cd₅Ni	102039	3	$\begin{array}{c} \gamma + \text{Ti2Ni} \\ \text{Cd26} \text{Cd12CO(Cd,Ni)10OH,T} \\ 1b \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) 1a (0,0,0) \end{array}$	γ + Ti2Ni@12 Cd26 (Ni + Cd)10OH, TCd12CO@Cd12 1b ($\frac{1}{2}$, $\frac{1}{2}$) 1a (0,0,0)
Ba5Ti12Sb19.10	380356	1	$\gamma + \gamma$ Sb22IT,OH,COBa4OT Sb16.2IT,OT,COBa6OH 1a (0,0,0) 1b ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)	$\gamma + \gamma + спейсер$ Sb22IT,OH,COBa4OT Sb16.2IT,OT,COBa6OH 1a (0,0,0) 1b ($\frac{1}{2}$, $\frac{1}{2}$)
Ti ₈ In ₅	460800	1	Подобна кластеру ү-латуни	$\gamma + \gamma @ 12$ In8IT, OTTi18OH, CO $1b (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ Ti8Ti6OHIn12CO@In12 $1b (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 1a (0,0,0)
Ni ₈ Zn ₃₆ Ga ₅	AL7806	2	Гомеотипипна Cu ₅ Zn ₈	γ + спейсер Ga4ITNi4OTZn18OH, CO 4b (¹ / ₂ , ¹ / ₂ , ¹ / ₂)

Распределение химических элементов по полиэдрическим оболочкам кла-

IT	Кол-во	ОТ	Кол-во	ОН	Кол-во	СО	Кол-во
7.4	структур	<u>a</u> 1	структур	R (структур	7.10	структур
Zn4	67	Cu4	58	Zn6	61	Zn12	/8
Al4	55	Pd4	44	Cu6	47	Zr12	51
Mg4	47	Al4	40	Fe6	40	Ti12	49
Fe4	47	Mn4	38	Mn6	29	Hf12	42
Mn4	36	Fe4	36	Gd6	28	Y12	41
Ni4	33	Ni4	30	Mg6	26	Gd12	32
Cu4	32	Ga4	24	Ge6	26	Mg12	26
Cd4	31	Co4	23	C06	22	Cu12	23
Ga4	30	Gd4	21	Hf6	20	Sc12	23
In4	28	Ti4	20	Ni6	16	Al12	21
Li4	24	Zn4	17	Ce6	15	Li12	20
Co4	17	Hf4	17	Ti6	15	Cd12	17
Gd4	9	Li4	16	Cd6	13	Dy12	15
	8	Mg4	14	Zr6	12	Tb12	15
Pt4	7	Ir4	13	Li6	12	In12	14
Au4	6	Ag4	12	Al6	12	Ho12	14
Ca4	6	Zr4	11	Ru6	11	Pr12	13
Nd4	5	Ru4	11	Ir6	10	La12	12
Pd4	5	Pt4	10	La6	10	Sm12	12
La4	5	Rh4	10	Tb6	10	Er12	11
Sc4	5	Au4	9	Rh6	10	Nd12	11
Y4	4	Na4	8	Au6	9	Ta12	8
Tb4	4	Sc4	8	Dv6	9	Ce12	8
Mn2Fe2	4	Ce4	7	Ag6	9	Na12	7
Ag4	4	Tb4	7	Os6	9	Yb12	7
Be3.8Cu0.2	4	Ge4	7	A10.2Fe5.8	8	Lu12	7
Be3.8Ni0.2	4	Sn4	6	Na6	8	Nb12	7
Rh4	4	Cr4	5	Y6	8	Ca12	7
Mn0.1	3	Fe2.7Zn1.3	5	Nd6	8	Tm12	6
Mn3Co	3	Y4	5	Pd6	8	Th12	5
Fe2.7Zn1.3	3	Nd4	5	Ноб	7	Mn12	5
Ce4	3	Dv4	5	Pr6	6	Sr12	4
Dv4	3	La4	5	Pt6	6	Bal2	4
Pr4	3	Ho4	5	Sn6	5	Δσ12	4
Sm4	3	Cd4	4	Fr6	5	Gal2	4
Mα3 7Ni0 3	3	Pr/	4	Sch	5	Δμ12	3
A10 77n3 3	3	Fr/	4	Mn/1 5Col 5	3	Sn12	3
Ir/	3	Mn2Eo2	4	Sm6		All 57n10 5	3
A10.0Ee/L0	3	Be3 8Cu0 2	4	Mn3Fe3		Pt12	2
Mn2 0	2	Be3.8Cu0.2	4	Rof	4	Go2 6Pt0 4	2
$M_{\alpha} 2 7 D_{\mu} 1 2$	2	Mr0.0	4	Da0	3	A15 6Th6 4	2
Mg2./Ku1.5	2	Millo.0	3		3	AI3.0100.4	2
AISUT	2	MaDu2	3	110 Ma5 9	2	r012	2
MINIT.UFe3.0	2		3		2	AI3119	2
A4	2	AII.IFe2.9	3	MIND.9	2	111.8 V11.6	1
Pd3.5Dy0.5	2	Sm4	3	All.0Cr5.0	2	Y11.6	1
Hg4	2	T14	2	Mn2.4Fe3.6	2	V6Mn6	1

стера ү-латуни

прооолжение таолицы 11.

Al2.7Ti1.3	2	Mn3.8	2	X6	2	X12	1
Mg3.2Al0.8	2	Mn3.9	2	Li0.4Ag5.6	2	Cu1.0Cd11.0	1
Al3.8Ir0.2	2	Al0.4Fe3.6	2	In6	2	Hg11.1	1
Zn3.4	2	Al1.6Fe2.4	2	Zn3.7Ir2.3	2	Zn4.0Cd8.0	1
Er4	2	Ta4	2	Mg0.3Sm5.7	2	Y2.0Ho10.0	1
Ho4	2	Mn3Fe	2	Tm6	2	Al11.4Fe0.6	1
Mg1.8In2.2	2	Dy2	2	Zn3.5Pd2.5	2	Mg1.6Gd10.4	1
Al0.4Zn3.6	2	Li0.3Ag3.7	2	Yb6	2	Mg1.6Y10.4	1
A13.2Cu0.8	2	Zn3.3Ir0.7	2	Pb6	2	Rb12	1
Ni0.4Cu3.6	2	Cr3.0Cu1.0	2	Al1.5Ti4.5	2	Cu1.2Zn10.8	1
Be3.8Co0.2	2	Ni1.6Cu2.4	2	Zn3Hg3	2	Al0.4Zn11.6	1
Be3.8Pd0.2	2	Mn3.3Fe0.7	2	Cd3Hg3	2	Cu10.3	1
Co0.2Ga3.8	2	Be3.8Co0.2	2	Hg6	2	Sb12	1
Ta4	2	Be3.8Pd0.2	2	Cu3Hg3	2	Mg5.8Dy6.2	1
Cd3	2	Co0.2Ga3.8	2	Ag3Hg3	2	Mg0.8Nd11.2	1
Al0.3Cu3.7	2	Zn2Hg2	2	Au3Hg3	2	Mg0.6Sm11.4	1
Al0.6Cu3.4	2	Cd2Hg2	2	Na5.6	1	Mg0.6Gd11.4	1
Mn0.0	1	Hg4	2	Mn5.7	1	Mg2.2Er9.8	1
Be4	1	Cu2Hg2	2	Mn0.1	1	Mg1.8Tb10.2	1
Al1.3Cu2.7	1	Ag2Hg2	2	Mn0.2	1	Mg3.9Ho8.1	1
TiZr3	1	Au2Hg2	2	Be6	1	Mg0.5Er11.5	1
Nb4	1	Al1.3Cu2.7	1	Al1.9Cu4.1	1	Mg0.7Sm11.3	1
Cu3	1	V2Mn2	1	V3Mn3	1	Mg0.6Pr11.4	1
Fe2Zn2	1	V4	1	Nb6	1	Mg0.5Nd11.5	1
Fe2.5Zn1.5	1	Zn1.3Cd2.7	1	Na5.5	1	Mg0.5Gd11.5	1
Mg3.8A10.2	1	Mg3.8A10.2	1	Fe4Zn2	1	Mg2.1Tb9.9	1
Co3.9	1	Ni2.7Pd1.3	1	Zn4Pd2	1	Al1.6Zn10.4	1
Ru1.1In2.9	1	Ni1.4Pd2.6	1	Cu1.5Cd4.5	1	Al1.7Zn10.3	1
A13.4Rh0.6	1	Cu3.8	1	Zn2.0Cd4.0	1	Al1.3Zn10.7	1
Al3.6Rh0.4	1	Li0.1Na3.9	1	Mg5.7Al0.3	1	Al2.3Tb9.7	1
A10.3Zn3.7	1	Sb4	1	Mg0.8Y5.2	1	Zn10.8	1
Ga0.0	1	Ba4	1	Cr2.0Fe4.0	1	Zn10.9	1
K4	1	Co3.7	1	Sb6	1	Y4.0Er8.0	1
Na3.6	1	Tm4	1	Cu5.1Zn0.9	1	Al6In6	1
Sb0.2	1	Zn2.9	1	Cu4.4Zn1.6	1	Cr4.0Nb8.0	1
Mg3.4Ru0.6	1	Zn3.4	1	Zn5.5Pd0.5	1	Cr12	1
Mg3.4Pd0.6	1	Zn3.7	1	Ga5.9	1	Pr6.6Er5.4	1
Mg3.7Pt0.3	1	Zn3.2	1	K6	1	Y6Gd6	1
Mg3.6Ni0.4	1	Zn3.8	1	Mg2.9Dv3.1	1	Pr6Gd6	1
Mg2.1A11.9	1	Pd3.9Au0.1	1	Mg0.4Nd5.6	1	Pr8.0Ho4.0	1
Mg0.4A13.6	1	Zn3.2Au0.8	1	Mg0.3Gd5.7	1	Pr10.2Tb1.8	1
Al0.8Zn3.2	1	Pd3.4	1	Mg1.1Er4.9	1	Pr6Tm6	1
A13.0	1	Zn2.9Au1.1	1	Mg0.9Tb5.1	1	Y6Th6	1
A10.97n3.1	1	Pd3.5Au0.5	1	Mg1.9Ho4.1	1	Zr10.0Rh2.0	1
A13 5Zn0 5	1	Zn2 7Au1 3	1	Mg0 3Er5 7	1	Zr6Hf6	1
A13.1	1	Pd3.3Au0.7	1	Mg0.3Pr5.7	1	Cu3Ga9	1
A10.57n3 5	1	Yb4	1	Mg0.2Nd5 8	1	Cu9Ga3	1
A13.1Zn0.9	1	Ca4	1	Mg0.2Gd5.8	1	Cu0.5Cd0.5	1
A10.27n3.8	1	Pb4	1	Mg1.1Th4.9	1	In3Au9	1
Zn2.2	1	In4	1	Zn1.7Pd4 3	1	In9Au3	1
Yb4	1	Zn3.5Pt0.5	1	Zn2.3Pd3.7	1	MnIn11	1
-	1		*		1		1

Продолжение	таблицы П	. 16
I		

Zn3.1	1	Zn2.8	1	Zn2.7Pd3.3	1	Zn6Hg6	1
Mn0.8Fe3.2	1	Zn3.4Pt0.6	1	Zn1.9Pd4.1	1	Cd6Hg6	1
Mn1.9Fe2.1	1	Zn2.3Pt1.6	1	Zn2.5Pd3.5	1	Hg12	1
Mn1.5Fe2.5	1	Zn2.4Pt1.6	1	Zn2.9Pd3.1	1	Cu6Hg6	1
Mn1.3Fe2.7	1	Mn0.1Fe3.9	1	Zn5.6Au0.4	1	Ag6Hg6	1
Mn3.4Fe0.6	1	Mn0.4Fe3.6	1	Zn3.4Au2.6	1	Au6Hg6	1
Mn3.7Fe0.3	1	Mn0.3Fe3.7	1	Zn4.9Pd1.1	1		
Mn3.8Fe0.2	1	Mn1.5Fe2.5	1	Ca6	1		
Mn3.9Fe0.1	1	Mn2.3Fe1.7	1	Zn4.0Pd2.0	1		
Mn1.4Fe2.6	1	Mn2.7Fe1.3	1	Al1.8Fe4.2	1		
Al1.7Ag2.3	1	Al1.7Ag2.3	1	Zn0.8Pt5.2	1		
Ag0.4In3.6	1	Al3.8Co0.2	1	Zn0.9Pt5.1	1		
Zn2Ag2	1	Al2.7Fe1.3	1	Zn4.1	1		
A13.8Co0.2	1	A13.8Ir0.2	1	Zn3.2Pt2.8	1		
Al2In2	1	A13.8Ni0.2	1	Zn2.9Pt3.1	1		
Al2.7Fe1.3	1	Co1.7Ga2.3	1	Zn4.3	1		
A13.8Ni0.2	1	Co2Ni2	1	Mn0.4Fe5.6	1		
Ru4	1	Cr3 6Ta0 4	1	Mn1 1Fe4 9	1		
Fe2Co2	1	Cu2 2Ga1 8	1	Mn0 7Fe5 3	1		
Col 7Ga2 3	1	Eu2.2001.0	1	Mn4 1Fe1 9	1		
Co3 8Ni0 2	1	Ti1 0Ga3 0	1	Mn3 3Fe2 7	1		
Co2Ni2	1	Fe0 8Ga3 2	1	Mn4 3Fe1 7	1		
Cr4	1	Fe0 8Ge3 2	1	Mn/ 8Fe1 2	1		
C_{12} C_{23} C_{14}	1	Mn1 8Fe2 2	1	Mn5 /Fe0 6	1		
Pd3 5Er0 5	1	Mn1 8Ga2 2	1	Mn2 2Ee3 8	1		
Til 0Ga3 0	1	Ni0 2Ga3 8	1	A12 6A g3 4	1		
Fe0 8Ga3 2	1	Ho2	1	$\Delta \sigma^3 $ 9In 2.1	1		
Fe0 8Ge3 2	1	Pd2 5In1 5	1	Ag4 8In1 2	1		
Mn1 8Ee2 2	1	I u2.5111.5	1	A12 5Ee3 5	1		
Fe2Ni2	1	Th2	1	A12.5FC3.5	1		
Mn1 8Ga2 2	1	Tm2	1	Co2 6Ga3 4	1		
Ni0 2Ga3 8	1	7r2Hf2	1	Cr2.00a3.4	1		
Ni2 3Ir1 7	1	Mn3 0Co1 0	1	$C_{12.01004.0}$	1		
Ni2.80s1.2	1	A10 5Ee3 5	1	Cu3 7Ga2 3	1		
Ni2 1Ph1 9	1	7n3 6 Ir0 4	1	Cu2.2Ga3.8	1		
Ni2 8Pu1 2	1	Li1 6Ag1 6	1	Cu2.2Ga3.8	1		
Os4	1	Os4	1	Mn2 8Ee3 2	1		
Pd3 5Ho0 5	1	034	1	Mn2.8G93.2	1		
Mn3In	1			Jui6	1		
Pd3 5L u0 5	1			$\frac{Lu0}{Mn^2 0Pr^3 1}$	1		
Ni2Mo2	1			T ₂₆	1		
7r4	1			$7r5 \Omega Ph1 \Omega$	1		
Pd3 5Tb0 5	1			Zr3Hf3	1		
Pd3 5Tm0 5	1			A10.1Cu5.0	1		
Mn3 0Co1 0	1			A10/1Cu5.6	1	<u> </u>	
A11 3Ti2 7	1			A11.0Cu5.0	1		
A10 9Ti2 1	1			A10.8Cu5.2	1	<u> </u>	
A10.7Cu2.2	1			7n5 OIr1 0	1		
A10.0Cu3.3	1			$L_{12}/\Delta_{02}/A$	1		
7n3 5Ir	1			Cu1 5Cd1 5	1		
Cd3 2	1			MndIn?	1		
Cu3.2	1	1		1711171112	1	1	1

173	
Продолжение таблицы П. 16	

Zn2Hg2	1		Bi6	1	
Cd2Hg2	1				
Cu2Hg2	1				
Ag2Hg2	1				
Au2Hg2	1				

Встречаемость нанокластеров в интерметаллидах

Нанокластер				Сингония	1		
manoksiaciep	триклинная	моноклинная	ромбическая	тетрагональная	тригональная	гексагональная	кубическая
0@12	13	50	145	378	307	1263	1444
1@12	12	48	145	377	285	1250	1426
0@20	1	1	36	13	35	16	120
1@20	0	0	7	1	1	0	9
0@12@32	0	1	16	3	25	15	104
1@12@32	0	0	1	1	20	7	44
0@12@32@80	0	0	4	0	0	21	4
0@12@32@92	0	0	0	0	0	0	6
0@12@32@110	0	0	0	0	0	0	1
1@12@32@98	0	0	0	0	0	2	0
0@4@22	29	125	488	1590	987	2630	3525
0@4@26	0	0	0	18	4	2	115
0@4@30	0	0	1	0	1	18	51
0@6@28	0	5	25	43	7	109	304
0@6@32	0	0	0	0	0	0	2
0@6@40	0	0	0	0	1	12	159
0@8@26	7	18	22	215	42	8	2365
0@8@34	7	18	22	216	28	1	2468
0@8@38	7	24	33	605	45	39	2325
1@8@34	7	18	21	210	25	1	2351
1@14@40	0	0	0	0	0	0	7
1@16@44	0	0	0	0	1	0	24

Геометрические и топологические характеристики модельных нанокластеров Cu_N

Vouunoatho atomon		Ко	Количество			оличес	тво	Кол	ичеств	о гра-	КЧ атомов в оболочке		
количество атомов, N	Формула	В	ершин,	v		ребер,	e		ней, і	P	1	2	3
1		1	2	3	1	2	3	1	2	3	1	2	5
4	0@4	4			6			4			34		
5	0@5	5			9			6			$4^{3}3^{2}$		
6	0@6	6			12			8			46		
7	0@7	7			15			10			6 ² 4 ⁵		
8	0@7@1	7	1		12	0		7	0		6 ² 4 ⁵	0	
9	0@7@2	7	2		12	1		7	1		$6^{2}4^{5}$	1^{2}	
10	0@7@3	7	3		12	2		7	1		$6^{2}4^{5}$	$1^{2}2^{1}$	
11	0@7@4	7	4		12	5		7	3		6 ² 4 ⁵	$2^{2}3^{2}$	
12	0@7@5	7	5		12	5		7	2		6 ² 4 ⁵	25	
13	1@12	12			30			20			5 ¹²		
14	1@12@1	12	1		30			20			5 ¹²		
15	1@12@2	12	2		30	1		20	1		5 ¹²	2^{1}	
16	1@12@3	12	3		30	2		20	1		5 ¹²	$2^{1}1^{2}$	
17	1@12@4	12	4		30	3		20	1		5 ¹²	2^{2}	
18	1@12@5	12	5		30	5		20	2		5 ¹²	25	
19	1@12@6	12	6		30	10		20	6		5 ¹²	5 ¹ 3 ⁵	
20	1@12@7	12	7		30	11		20	6		5 ¹²	5 ¹ 4 ¹ 3 ⁴	
21	1@12@8	12	8		30	12		20	6		5 ¹²	3 ³ 4 ² 5 ¹	
22	1@12@9	12	9		30	16		20	9		5 ¹²	2 ² 3 ³ 4 ¹ 5 ³	
23	1@12@10	12	10		30	19		20	11		5 ¹²	5 ⁴ 3 ⁶	
24	1@12@11	12	11		30	22		20	13		5 ¹²	6 ¹ 5 ³ 4 ² 3 ⁵	
25	1@12@12	12	12		30	24		20	14		5 ¹²	2134425461	
26	1@12@13	12	13		30	27		20	16		5 ¹²	615636	
27	0@3@24	3	24		3	66		1	44		2^{3}	5 ¹² 6 ¹²	

28	0@4@24	4	24		6	66		4	44		2^{3}	5 ¹² 6 ¹²	
29	0@4@25	4	25		6	69		4	46		2^{3}	$5^{12}6^{13}$	
30	0@4@26	4	26		6	72		4	48		2^{3}	$5^{12}6^{14}$	
31	0@4@27	4	27		6	75		4	50		2^{3}	5 ¹² 6 ¹⁵	
32	0@5@27	5	27		9	69		6	44		4 ³ 3 ²	4 ² 5 ²⁰ 6 ⁵	
33	0@5@28	5	28		9	78		6	52		4 ³ 3 ²	5 ¹² 6 ¹⁶	
34	0@6@28	6	28		12	78		8	52		4 ⁶	5 ¹² 6 ¹⁶	
35	0@4@24@7	4	24	7	6	60	7	4	38	2	3 ⁴	4 ³ 5 ¹⁸ 6 ³	$2^{3}3^{2}$
36	0@5@27@4	5	27	4	9	69	5	6	44	3	4 ³ 3 ²	$4^25^{20}6^5$	2 ² 3 ²
37	0@6@31	6	31		12	87		8	58		4 ⁶	$5^{12}6^{19}$	
38	0@6@32	6	32		12	84		8	54		4 ⁶	$5^{24}6^{8}$	
39	0@7@32	7	32		15	85		10	55		6 ² 4 ⁵	5 ²² 6 ¹⁰	
40	0@7@32@1	7	32	1	15	85		10	55		6 ² 4 ⁵	5 ²² 6 ¹⁰	
41	0@7@32@2	7	32	2	15	85		10	55		6 ² 4 ⁵	$5^{22}6^{10}$	
42	0@7@32@3	7	32	3	15	85	2	10	55	1	6 ² 4 ⁵	$5^{22}6^{10}$	
43	0@7@32@4	7	32	4	15	85	5	10	55	3	6 ² 4 ⁵	$5^{22}6^{10}$	$2^{2}3^{2}$
44	0@7@32@5	7	32	5	15	85	5	10	55	2	6 ² 4 ⁵	5 ²² 6 ¹⁰	$2^{2}3^{2}$
45	0@7@32@6	7	32	6	15	85	8	10	55	4	6 ² 4 ⁵	$5^{22}6^{10}$	2 ¹ 3 ³ 4 ¹
46	0@7@32@7	7	32	7	15	85	11	10	55	6	6 ² 4 ⁵	5 ²² 6 ¹⁰	$2^{2}3^{2}4^{3}$
47	0@7@32@8	7	32	8	15	85	11	10	55	5	6 ² 4 ⁵	$5^{22}6^{10}$	$2^{2}3^{2}4^{3}$
48	0@7@32@9	7	32	9	15	85	14	10	55	7	6 ² 4 ⁵	$5^{22}6^{10}$	2 ¹ 3 ⁴ 4 ² 5 ¹
49	0@7@32@10	7	32	10	15	85	17	10	55	9	6 ² 4 ⁵	$5^{22}6^{10}$	$2^2 3^3 4^4 5^1$
50	0@7@32@11	7	32	11	15	85	19	10	55	10	6 ² 4 ⁵	$5^{22}6^{10}$	$2^{2}3^{4}4^{3}5^{2}$
51	0@7@32@12	7	32	12	15	85	21	10	55	11	6 ² 4 ⁵	$5^{22}6^{10}$	2 ² 3 ⁴ 4 ⁴ 5 ²
52	0@7@32@13	7	32	13	15	85	24	10	55	13	6 ² 4 ⁵	5 ²² 6 ¹⁰	2 ¹ 3 ⁵ 4 ⁴ 5 ³
53	0@7@32@14	7	32	14	15	85	29	10	55	17	6 ² 4 ⁵	$5^{22}6^{10}$	2 ¹ 3 ⁵ 4 ² 5 ³ 6 ³
54	0@7@32@15	7	32	15	15	85	32	10	55	19	6 ² 4 ⁵	$5^{22}6^{10}$	36435264
55	1@12@42	12	42		30	120		20	80		5 ¹²	6 ³⁰ 5 ¹²	
56	1@12@42@1	12	42	1	30	120		20	80		5 ¹²	6 ³⁰ 5 ¹²	

57	1@12@42@2	12	42	2	30	120	1	20	80	1	5 ¹²	6 ³⁰ 5 ¹²	12
58	1@12@42@3	12	42	3	30	120	3	20	80	2	5 ¹²	6 ³⁰ 5 ¹²	2 ³
59	1@12@42@4	12	42	4	30	120	4	20	80	2	5 ¹²	6 ³⁰ 5 ¹²	2^4
60	1@12@42@5	12	42	5	30	120	6	20	80	3	5 ¹²	6 ³⁰ 5 ¹²	$2^{3}3^{2}$
61	1@12@42@6	12	42	6	30	120	8	20	80	4	5 ¹²	6 ³⁰ 5 ¹²	$2^{2}3^{4}$
62	1@12@42@7	12	42	7	30	120	9	20	80	4	5 ¹²	$5^{12}6^{30}$	2 ¹ 3 ⁵
63	1@12@42@8	12	42	8	30	120	11	20	80	5	5 ¹²	6 ³⁰ 5 ¹²	2 ³ 3 ⁴ 4 ¹
64	1@12@42@9	12	42	9	30	120	13	20	80	6	5 ¹²	6 ³⁰ 5 ¹²	$2^{2}3^{6}4^{1}$
65	1@12@42@10	12	42	10	30	120	16	20	80	8	5 ¹²	6 ³⁰ 5 ¹²	$2^{2}3^{6}4^{4}$
66	1@12@42@11	12	42	11	30	120	18	20	80	9	5 ¹²	6 ³⁰ 5 ¹²	$2^{2}3^{4}4^{5}$
67	1@12@42@12	12	42	12	30	120	20	20	80	10	5 ¹²	6 ³⁰ 5 ¹²	$2^{2}3^{4}4^{6}$
68	1@12@42@13	12	42	13	30	120	23	20	80	12	5 ¹²	6 ³⁰ 5 ¹²	$2^{2}3^{6}4^{1}5^{4}$
69	0@7@32@30	7	32	30	15	85	55	10	55	27	6 ² 4 ⁵	$5^{22}6^{10}$	315410
70	0@7@32@31	7	32	31	15	80	67	10	50	38	6 ² 4 ⁵	5 ³²	3 ¹¹ 4 ⁸ 5 ³ 6 ⁹
71	0@7@32@32	7	32	32	15	80	70	10	50	40	6 ² 4 ⁵	5 ³²	31041052610
72	0@7@32@33	7	32	33	15	85	70	10	55	39	6 ² 4 ⁵	$5^{22}6^{10}$	3 ¹³ 4 ⁷ 5 ⁵ 6 ⁸
73	0@7@32@34	7	32	34	15	85	68	10	55	36	6 ² 4 ⁵	$5^{22}6^{10}$	2 ² 3 ¹³ 4 ⁷ 5 ⁷ 6 ⁵
74	0@7@32@35	7	32	35	15	85	69	10	55	36	6 ² 4 ⁵	$5^{22}6^{10}$	2 ² 3 ¹² 4 ⁸ 5 ⁷ 6 ⁵
75	1@12@42@20	12	42	20	25	100	20	15	60	2	4 ¹⁰ 5 ²	4 ²⁰ 5 ¹² 6 ¹⁰	2^{20}
76	1@12@42@21	12	42	21	25	100	24	15	60	5	$4^{10}5^2$	$4^{20}5^{12}6^{10}$	2 ¹⁶ 3 ⁴ 4 ¹
77	1@12@42@22	12	42	22	25	100	25	15	60	5	$4^{10}5^2$	$4^{20}5^{12}6^{10}$	2 ¹⁶ 3 ⁶
78	0@5@27@46	5	27	46	9	69	103	6	44	59	$4^{3}3^{2}$	$4^25^{20}6^5$	3442251466
79	1@12@42@24	12	42	24	24	96	24	14	56	2	4 ¹²	4 ¹⁸ 5 ²⁴	2^{24}
80	0@5@27@48	5	27	48	9	69	113	6	44	67	$4^{3}3^{2}$	$4^25^{20}6^5$	34417516611
81	0@5@27@49	5	27	49	9	69	118	6	44	71	$4^{3}3^{2}$	$4^25^{20}6^5$	34412522611
82	0@5@27@50	5	27	50	9	69	123	6	44	75	$4^{3}3^{2}$	$4^25^{20}6^5$	3 ² 4 ²⁰ 5 ⁸ 6 ²⁰
83	0@5@27@51	5	27	51	9	69	127	6	44	78	4 ³ 3 ²	$4^25^{20}6^5$	$4^{22}5^{8}6^{21}$
84	0@5@27@52	5	27	52	9	69	128	6	44	78	$4^{3}3^{2}$	$4^25^{20}6^5$	3 ⁶ 4 ¹² 5 ¹⁴ 6 ²⁰
85	0@4@24@57	4	24	57	6	60	147	4	38	92	34	4 ³ 5 ¹⁸ 6 ³	4 ¹⁵ 5 ¹⁸ 6 ²⁴

Продолжение таблицы П. 18

86	0@4@24@58	4	24	58	6	60	152	4	38	96	34	4 ³ 5 ¹⁸ 6 ³	3 ¹ 4 ⁹ 5 ²³ 6 ²⁵
87	0@4@24@59	4	24	59	6	60	153	4	38	96	34	4 ³ 5 ¹⁸ 6 ³	3 ³ 4 ⁸ 5 ²³ 6 ²⁵
88	0@4@24@60	4	24	60	6	60	157	4	38	99	34	4 ³ 5 ¹⁸ 6 ³	4 ⁹ 5 ²⁸ 6 ²³
89	0@4@24@61	4	24	61	6	60	162	4	38	103	34	4 ³ 5 ¹⁸ 6 ³	4 ⁹ 5 ²⁴ 6 ²⁸
90	0@4@24@62	4	24	62	6	60	166	4	38	106	34	4 ³ 5 ¹⁸ 6 ³	4 ⁷ 5 ²⁶ 6 ²⁹
91	0@4@24@63	4	24	63	6	60	170	4	38	109	34	4 ³ 5 ¹⁸ 6 ³	4 ⁵ 5 ²⁸ 6 ³⁰
92	0@4@24@64	4	24	64	6	60	174	4	38	112	34	4 ³ 5 ¹⁸ 6 ³	4 ³ 5 ³⁰ 6 ³¹
93	0@5@27@61	5	27	61	9	69	159	6	44	100	4 ³ 3 ²	$4^25^{20}6^5$	3 ³ 4 ⁸ 5 ²³ 6 ²⁷
94	0@5@27@62	5	27	62	9	69	163	6	44	103	4 ³ 3 ²	4 ² 5 ²⁰ 6 ⁵	31410523628
95	0@5@27@63	5	27	63	9	69	167	6	44	106	4 ³ 3 ²	$4^25^{20}6^5$	3 ¹ 4 ⁸ 5 ²⁵ 6 ²⁹
96	0@5@27@64	5	27	64	9	69	169	6	44	107	4 ³ 3 ²	$4^25^{20}6^5$	31410523630
97	0@5@27@65	7	32	58	15	85	146	10	55	90	5^{12}	$5^{22}6^{10}$	37410515626
98	0@4@24@70	4	24	70	6	54	192	4	32	124	34	4 ¹² 5 ¹²	5 ³⁶ 6 ³⁴
99	0@5@27@67	5	27	67	9	69	181	6	44	116	4 ³ 3 ²	$4^25^{20}6^5$	4 ⁶ 5 ²⁸ 6 ³³
100	0@5@27@68	5	27	68	9	69	185	6	44	119	4 ³ 3 ²	$4^25^{20}6^5$	4 ⁴ 5 ³⁰ 6 ³⁴

Продолжение таблицы П. 18

Встречаемость модельных нанокластеров Cu_N в структурах интерметаллидов

Количество ато- мов,	Количе	ство вер	ошин, v		Количес ребер,	гво е	Кол	ичество гр	аней, f	Встречаемость		
Ν	1	2	3	1	2	3	1	2	3			
Нанокластеры с внутренним ядром 0@3												
27	3	24		3	66		1	44		0		
Нанокластеры с внутренним ядром 0@4												
4	4			6			4			26213		
28	4	24		6	66		4	44		0		
29	4	25		6	69		4	46		0		
30	4	26		6	72		4	48		0		
31	4	27		6	75		4	50		0		
35	4	24	7	6	60	7	4	38	2	195		
85	4	24	57	6	60	147	4	38	92	118		
86	4	24	58	6	60	152	4	38	96	0		
87	4	24	59	6	60	153	4	38	96	0		
88	4	24	60	6	60	157	4	38	99	0		
89	4	24	61	6	60	162	4	38	103	0		
90	4	24	62	6	60	166	4	38	106	0		
91	4	24	63	6	60	170	4	38	109	0		
92	4	24	64	6	60	174	4	38	112	0		
98	4	24	70	6	54	192	4	32	124	0		
Нанокластеры с внутренним ядром 0@5												
5	5			9			6			21535		
32	5	27		9	69		6	44		221		
33	5	28		9	78		6	52		0		
36	5	27	4	9	69	5	6	44	3	205		
78	5	27	46	9	69	103	6	44	59	118		
80	5	27	48	9	69	113	6	44	67	117		

81	5	27	49	9	69	118	6	44	71	117			
82	5	27	50	9	69	123	6	44	75	0			
83	5	27	51	9	69	127	6	44	78	0			
84	5	27	52	9	69	128	6	44	78	0			
93	5	27	61	9	69	159	6	44	100	0			
94	5	27	62	9	69	163	6	44	103	0			
95	5	27	63	9	69	167	6	44	106	0			
96	5	27	64	9	69	169	6	44	107	0			
99	5	27	67	9	69	181	6	44	116	0			
100	5	27	68	9	69	185	6	44	119	0			
Нанокластеры с внутренним ядром 0@6													
6	6			12			8			15140			
34	6	28		12	78		8	52		0			
37	6	31		12	87		8	58		0			
38	6	32		12	84		8	54		0437			
Нанокластеры с внутренним ядром 0@7													
7	7			15			10			12693			
8	7	1		12	0		7	0		12596			
9	7	2		12	1		7	1		11865			
10	7	3		12	2		7	1		10901			
11	7	4		12	5		7	3		9785			
12	7	5		12	5		7	2		8178			
39	7	32		15	85		10	55		192			
40	7	32	1	15	85		10	55		192			
41	7	32	2	15	85		10	55		198			
42	7	32	3	15	85	2	10	55	1	198			
43	7	32	4	15	85	5	10	55	3	198			
44	7	32	5	15	85	5	10	55	2	198			
45	7	32	6	15	85	8	10	55	4	198			
Продолжение таблицы П. 19

46	7	32	7	15	85	11	10	55	6	198
47	7	32	8	15	85	11	10	55	5	198
48	7	32	9	15	85	14	10	55	7	198
49	7	32	10	15	85	17	10	55	9	198
50	7	32	11	15	85	19	10	55	10	193
51	7	32	12	15	85	21	10	55	11	192
52	7	32	13	15	85	24	10	55	13	192
53	7	32	14	15	85	29	10	55	17	192
54	7	32	15	15	85	32	10	55	19	192
69	7	32	30	15	85	55	10	55	27	118
70	7	32	31	15	80	67	10	50	38	0
71	7	32	32	15	80	70	10	50	40	0
72	7	32	33	15	85	70	10	55	39	0
73	7	32	34	15	85	68	10	55	36	121
74	7	32	35	15	85	69	10	55	36	121
97	7	32	58	15	85	146	10	55	90	0
				Нан	окластерн	ы с внутрен	ним ядрог	м 1@12		
13	12			30			20			7911
14	12	1		30			20			7791
15	12	2		30	1		20	1		7672
16	12	3		30	2		20	1		7603
17	12	4		30	3		20	1		7499
18	12	5		30	5		20	2		5944
19	12	6		30	10		20	6		5707
20	12	7		30	11		20	6		5649
21	12	8		30	12		20	6		5564
22	12	9		30	16		20	9		4480
23	12	10		30	19		20	11		4433
24	12	11		30	22		20	13		4240

Продолжение таблицы П. 19

25	12	12		30	24		20	14		3664
26	12	13		30	27		20	16		3572
55	12	42		30	120		20	80		192
56	12	42	1	30	120		20	80		192
57	12	42	2	30	120	1	20	80	1	192
58	12	42	3	30	120	3	20	80	2	192
59	12	42	4	30	120	4	20	80	2	189
60	12	42	5	30	120	6	20	80	3	189
61	12	42	6	30	120	8	20	80	4	136
62	12	42	7	30	120	9	20	80	4	136
63	12	42	8	30	120	11	20	80	5	131
64	12	42	9	30	120	13	20	80	6	126
65	12	42	10	30	120	16	20	80	8	0
66	12	42	11	30	120	18	20	80	9	0
67	12	42	12	30	120	20	20	80	10	0
68	12	42	13	30	120	23	20	80	12	0
75	12	42	20	25	100	20	15	60	2	0
76	12	42	21	25	100	24	15	60	5	0
77	12	42	22	25	100	25	15	60	5	0
79	12	42	24	24	96	24	14	56	2	3270

Кристаллографические данные структур Au₁₀Mo₄Zn₈₉, AuZn_{2.1}, Cu₂InMn и Ag_{1.2}In_{0.6}Mn_{0.2}

Параметр		Значение	
Химическая формула	$Au_{10}Mo_4Zn_{89}$	AuZn _{2.1}	Cu ₂ InMn
Кристаллическая система	кубическая	тригональная	кубическая
Символ Пирсона	cF412	hP227	cF24
Пр. группа	F43 <i>m</i>	F31 <i>m</i>	$Fd\overline{3}m$
Параметры эл. ячейки, Å	a = 18.587(8)	a = 22.656(1), c = 7.978(1)	a = 7.141(1)
Объем, Å ³	6422.23(18)	3546.32(26)	364.15(14)
Ζ	4	6	4
R-фактор	0.0328	0.0479	0.0144

Координаты атомов в стр	ктурах Au10M04Zn89,	AuZn _{2.1} и Cu ₂ InMn
-------------------------	---------------------	--

Атом	Позиции Уайкова	Заселен- ность	x/a	y/b	z/c					
$Au_{10}Mo_4Zn_{89}$										
Zn1	16e	1	0.053	0.052	0.052					
Zn2	24f	1	0.184	0.000	0.00					
Zn3	48h	1	0.153	0.153	0.027					
Zn4	24g	1	0.644	0.250	0.250					
Zn5	48h	1	0.107	0.107	0.778					
Zn6	4b	1	0.50	0.500	0.500					
Zn7	16e	1	0.414	0.414	0.414					
Zn8	48h	1	0.047	0.047	0.652					
Zn9	48h	1	0.189	0.189	0.522					
Zn10	16e	1	0.320	0.320	0.320					
Zn11	16e	1	0.173	0.173	0.173					
Zn12	48h	1	0.083	0.083	0.270					
Mo1	16e	1	0.649	0.649	0.649					
Au1	16e	1	0.914	0.914	0.914					
Au2	24g	1	0.081	0.250	0.250					
AuZn _{2.1}										
Au1	1a		0.000	0.000	0.127					
Au2	3c		0.670	0.000	0.397					
Au3	1a		0.000	0.000	0.746					
Au4	3c		0.000	0.203	0.979					
Au5	6d		0.872	0.207	0.569					
Аиб	6d		0.746	0.209	0.445					
Au7	6d	0.8742	0.890	0.098	0.427					
Zn7a	6d	0.1258	0.890	0.098	0.427					
Au8	3c		0.000	0.433	0.928					
Au9	6d		0.662	0.120	0.918					
Au10	3c		0.000	0.542	0.360					
Au11	3c		0.799	0.000	0.890					
Au12	3c		0.000	0.337	0.442					
Au13	3c		0.665	0.000	0.774					
Au14	2b		0.667	0.33333	0.107					
Au15	2b		0.667	0.33333	0.691					
Au16	6d		0.884	0.422	0.758					
Au17	6d		0.793	0.339	0.232					
Au18	6d		0.882	0.220	0.949					
Au19	3c	0.4936	0.116	0.000	0.605					
Zn19a	3c	0.5064	0.116	0.000	0.605					

Au20	3c	0.1592	0.890	0.000	0.261
Zn20a	3c	0.8408	0.890	0.000	0.261
Au21	6d	0.3196	0.792	0.126	0.299
Zn21a	6d	0.6804	0.792	0.126	0.299
Zn1	6d	0.9552	0.879	0.105	0.095
Au1a	6d	0.0448	0.879	0.105	0.095
Zn2	3c		0.000	0.325	0.052
Zn3	6d		0.765	0.095	0.964
Zn4	3c		0.000	0.878	0.635
Zn5	6d		0.737	0.404	0.397
Zn6	6d		0.777	0.215	0.111
Zn7	6d		0.549	0.086	0.096
Zn8	6d		0.930	0.221	0.263
Zn9	3c		0.242	0.000	0.642
Zn10	6d		0.896	0.123	0.765
Zn11	6d		0.877	0.441	0.429
Zn12	6d		0.651	0.090	0.590
Zn13	3c		0.546	0.000	0.809
Zn14	3c		0.000	0.127	0.245
Zn15	3c		0.018	0.018	0.438
Zn16	3c	0.9545	0.629	0.000	0.082
Au16a	3c	0.0455	0.629	0.000	0.082
Zn17	6d		0.782	0.213	0.764
Zn18	6d		0.777	0.071	0.609
Zn19	6d		0.924	0.325	0.718
Zn20	6d		0.784	0.327	0.585
Zn21	3c		0.000	0.452	0.578
Zn22	6d		0.875	0.305	0.372
Zn23	6d		0.787	0.452	0.706
Zn24	6d	0.9277	0.757	0.323	0.905
Au24a	6d	0.0723	0.757	0.323	0.905
Zn25	3c		0.769	0.000	0.238
Zn26	6d		0.879	0.334	0.017
Zn27	3c		0.000	0.429	0.255
Zn28	6d		0.785	0.443	0.085
Zn29	6d		0.664	0.108	0.257
		Cu ₂ InM	n	1	1
Cu1	16c	1	0	0	0
In1	8b	0.61	0.375	0.375	0.375
Mn1	8b	0.39	0.375	0.375	0.375

Продолжение таблицы П. 21

Таблица П. 22

Тетраэдр		Треугольная бипира- мида		Окт	гаэдр	К	уб	Додекаэдр	
Элемент	Кол-во	Элемент	Кол-во	Элемент	Кол-во	Элемент	Кол-во	Элемент	Кол-во
Al	2027	Zn	1723	Al	915	Ga	358	Na	45
Zn	1751	Fe	1527	Ga	195	Pd	276	Cd	30
Fe	1718	Al	1377	Zn	190	Al	258	Κ	17
Ni	1314	Со	1020	Ni	184	Ni	255	Sn	12
Со	1214	Та	868	Mg	165	In	193	Li	8
Sn	761	Sn	587	Sb	138	Со	183	Ge	6
Ge	744	Mg	561	Gd	134	Cu	177	Mg	4
Cu	714	Ni	556	Pd	126	Mg	167	Zn	4
Mg	664	Be	522	Sc	125	Fe	150	Ca	3
Ga	618	Cd	496	La	119	Au	130	Ba	2
Cd	599	Mn	496	Zr	117	Li	130	Be	2
Та	567	Ge	484	Hf	113	Ag	126	Al	1
Be	542	U	462	Y	110	Ge	125	Hg	1
Mn	497	Pu	439	Pt	108	Zn	120	In	1
U	281	Ga	400	In	101	Cd	93		
Nb	246	Cu	343	Ti	101	Mn	93		
Pu	240	Li	197	Ce	94	Ti	92		
Au	235	T1	167	Pr	85	Sn	58		
Li	208	Hg	161	Но	84	Rh	54		
In	200	La	122	Nd	84	Ca	53		
La	199	Sc	116	Sn	81	Hg	52		
Sb	197	Th	109	Dy	79	Gd	44		

Встречаемость некоторых КП в интерметаллидах в зависимости от их химического состава

Продолжение таблицы П. 22

Hg	194	In	99	Er	79	Tb	43	
Tl	165	Sb	88	Tb	79	Sb	42	
Pt	155	Zr	86	Sm	59	Sc	39	
Zr	155	Nb	82	Lu	57	Er	38	
Sc	143	Gd	79	Tm	55	Ce	36	
Ca	140	Ce	78	Cu	49	Dy	35	
Ce	137	Au	65	Pb	46	Но	35	
Nd	115	Nd	65	Ca	42	Pt	35	
Ag	114	Ca	63	Со	40	Zr	34	
Th	114	Κ	58	Ge	38	Y	33	
V	112	Pr	57	Au	36	Pr	30	
Pr	106	Pt	51	Cd	36	Tm	30	
Мо	102	Pb	50	Mn	36	La	29	
Sr	101	Cr	49	Sr	35	Bi	28	
Cr	95	Sr	49	Th	34	Sr	28	
Pb	89	Y	49	Yb	34	Tl	28	
Y	83	Ti	47	Be	29	Sm	27	
Κ	82	Dy	40	U	27	Nd	26	
Ir	81	Na	35	Hg	26	Ru	24	
Cs	77	Np	35	Ba	25	Κ	23	
Dy	76	Мо	34	Rh	25	Yb	23	
Но	76	Er	33	Tl	25	Lu	22	
Hf	75	Hf	33	Pu	24	Ir	21	
Pd	75	Но	33	Na	22	Nb	16	
Na	73	Re	32	Nb	21	V	16	
Sm	72	Yb	30	Bi	20	Be	15	

Продолжение таблицы П. 22

Rh	66	Tb	29	Ir	20	Hf	15	
Tb	66	Al	26	Fe	17	Na	15	
Er	63	Ir	24	Κ	17	Eu	14	
Yb	56	Ag	22	Та	17	Np	14	
Bi	48	Eu	21	Eu	16	Та	13	
Re	47	Pd	21	V	13	Cs	12	
W	46	Rh	21	Ag	12	Pu	12	
Ba	41	Lu	20	Cf	10	Ba	11	
Eu	38	Tm	20	Os	10	Cr	10	
Tm	36	W	19	Ru	9	U	8	
Ru	35	Os	17	Li	7	Os	7	
Os	34	Ba	16	Re	7	Rb	7	
Rb	27	Am	15	Bk	6	Th	7	
Tc	24	Tc	13	Cs	6	Ро	5	
Cf	13	Fe	12	Np	6	Tc	5	
Am	10	V	11	Cm	5	Mo	4	
Bk	8	Bi	10	Cr	4	Pb	3	
Cm	8	Ru	9	Pa	4	Re	3	
Pa	7	Cm	6	Ро	4	Am	2	
Ро	6	Cf	4	Am	3	Pa	2	
Ac	1	Pa	4	Rb	3	W	2	
Ra	1	Sn	4	Тс	3	Cm	1	
		Bk	3	Mo	2	Pm	1	
		Rb	3	W	2	Ra	1	
		Ra	1	Ac	1			